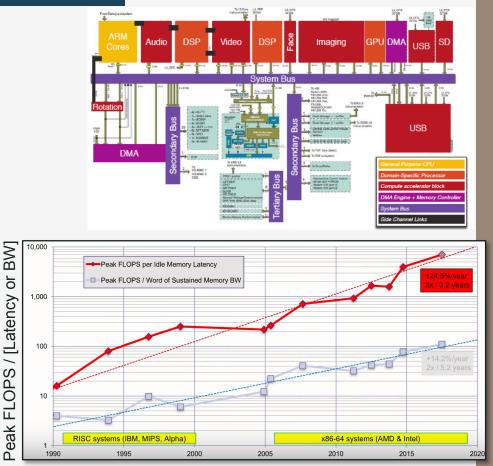
THE ELECTRONICS RESURGENCE INITIATIVE

DECADES: DEEPLY-CUSTOMIZED ACCELERATOR-ORIENTED DATA SUPPLY SYSTEMS SYNTHESIS

.....


LUCA CARLONI

DEPARTMENT OF COMPUTER SCIENCE COLUMBIA UNIVERSITY

THE DATA SUPPLY CHALLENGE

Modern computer systems are increasingly heterogeneous

- Accelerator-oriented parallelism to meet aggressive performance and power targets
- As accelerators have sped up compute portions, the main challenge is data supply
- Key bottlenecks lie in memory and communication overheads associated with supplying specialized accelerators with data
- Different apps have distinct data supply needs

John McCalpin, SC'16 Keynote

DECADES: A VERTICALLY-INTEGRATED APPROACH

Language and Compiler Support

- Enhance data locality
- Optimize spatial mapping of threads
- Enable in-memory computing

Very Coarse-Grained Reconfigurable Tile-Based Architecture

- Coarser than CGRA \rightarrow VCGRTA
- 3 classes of reconfigurable tiles
- Reconfigurable interconnection network
- Reconfigurable in-memory computing

Multi-Tiered Demonstration Strategy

- Scalable full-system simulation
- Multi-FPGA emulation infrastructure
- 225-tile DECADES chip prototype

DECADES: A VERTICALLY-INTEGRATED APPROACH

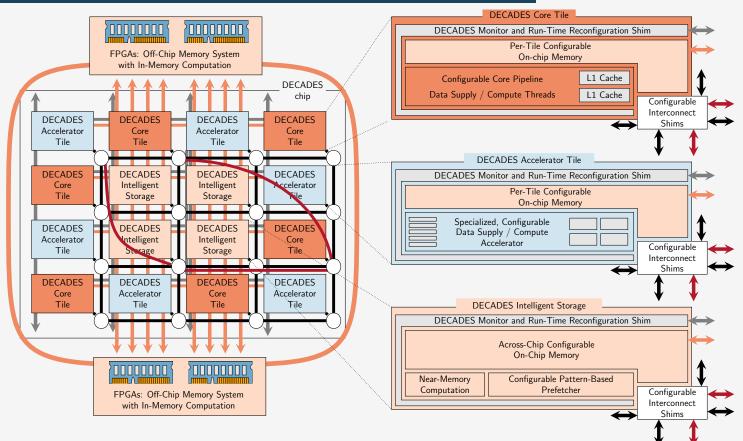
Language and Compiler Support

(M. Martonosi)

- Enhance data locality
- Optimize spatial mapping of threads
- Enable in-memory computing

Very Coarse-Grained Reconfigurable Tile-Based Architecture (L. Carloni)

- Coarser than CGRA → VCGRTA
- 3 classes of reconfigurable tiles
- Reconfigurable interconnection network
- Reconfigurable in-memory computing


Multi-Tiered Demonstration Strategy

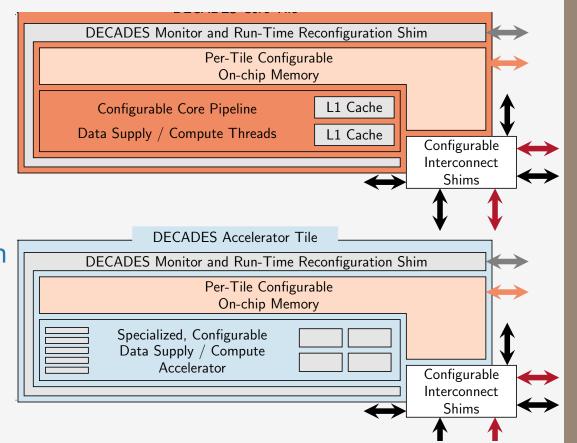
(D. Wentzlaff)

- Scalable full-system simulation
- Multi-FPGA emulation infrastructure
- 225-tile DECADES chip prototype

DECADES PLATFORM ARCHITECTURE

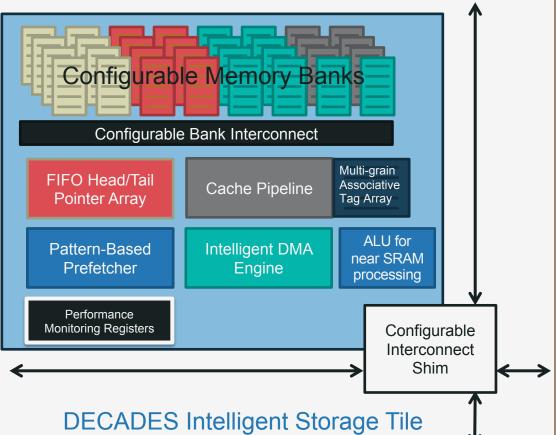
Heterogeneity meets coarse reconfigurability

PRIOR WORK: GRAPHICIONADO

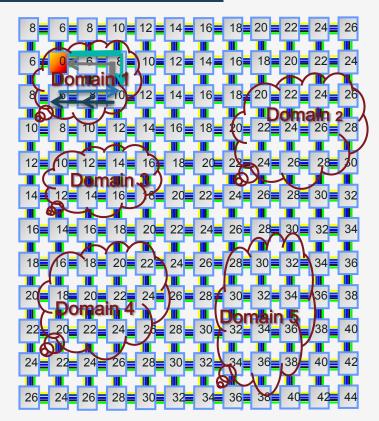


- Application-Specific Memory Hierarchy for Bandwidth-Bound Graph Analytics
 - Customized memory hierarchy to minimize off-chip memory access traffic [3x reduction]
 - Ease the design/use of accelerators
 - Dataflow pipeline based on high-level abstraction eases the programming and enables hardware reuse for different graph applications
 - Specialized HW accelerator for graph analytics successfully achieves ~3x speedup and 50x+ energy saving compared to state-of-the-art software framework on 32-core CPU

[Ham et al., MICRO-49, 2016. IEEE Micro Top Picks Honorable Mention]

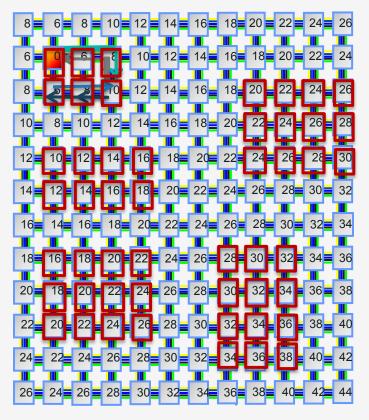

DECADES CORE AND ACCELERATOR TILES

- Computations mapped onto core tiles or available accelerator tiles
 - Each tile is wrapped in monitor/reconfiguration shim
- Dynamic reconfiguration of Supply-Compute decoupling, power-performance tradeoffs, and interconnect


INTELLIGENT DATA MANAGEMENT

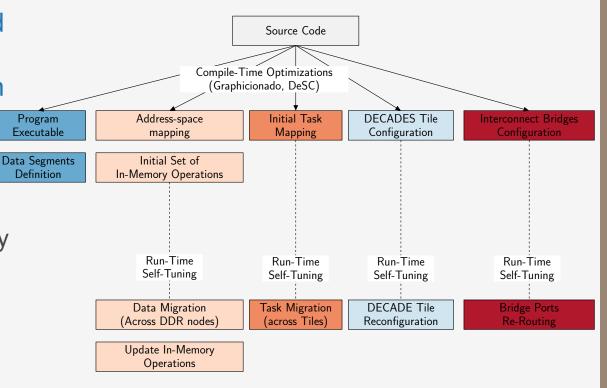
- Specialization #1: Map apps onto mix of compute tiles and intelligent storage (IS) tiles
- Specialization #2: Select and configure appropriate storage features within IS
 - Configurable memory banks + address and prefetching features
 - Simple near-SRAM ALU

PRIOR WORK: COHERENCE DOMAIN RESTRICTION FLEXIBLE MEMORY


- Flexible memory system on top of cache coherent system
 - Enables the exact minimal communication needed
 - Build incoherent coherent domains
- Restriction on application- or page-level
 - Improves performance
 - Shorter network on-chip distances
 - Less interfering memory coherence traffic
 - Reduces energy
 - Fewer on-chip network links need to be transited
 - Less area dedicated to tracking cache line sharers
 - Reduces area
 - Track fewer sharers on large configurations

[Fu et al, MICRO 2015]

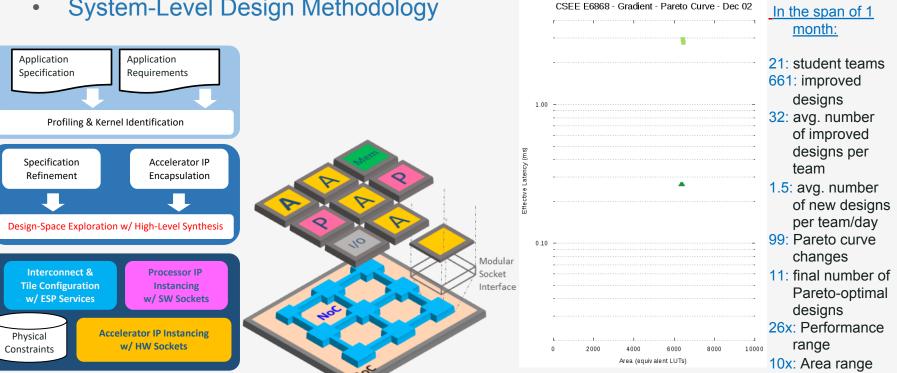
PRIOR WORK: COHERENCE DOMAIN RESTRICTION FLEXIBLE MEMORY


- Flexible memory system on top of cache coherent system
 - Enables the exact minimal communication needed
 - Build incoherent coherent domains
- Restriction on application- or page-level
 - Improves performance
 - Shorter network on-chip distances
 - Less interfering memory coherence traffic
 - Reduces energy
 - Fewer on-chip network links need to be transited
 - Less area dedicated to tracking cache line sharers
 - Reduces area
 - Track fewer sharers on large configurations

[Fu et al, MICRO 2015]

LANGUAGE, COMPILER & RUNTIME SYSTEM

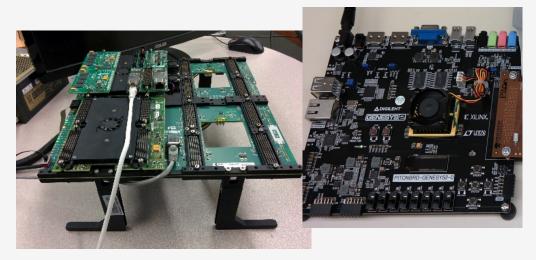
- Compiler Analysis and Support for memory hierarch specialization
 - Bandwidth
 optimizations
 through cache
 optimizations
 and locality/granularity
 tailoring
 - Latency tolerance
 through decoupling
- Build on DeSC LLVM compiler infrastructure



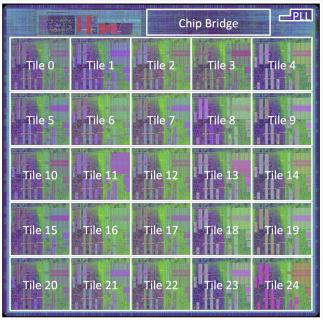
[Ham/Aragon/Martonosi, MICRO-48, 2015]

PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

- Flexible Tile-Based Architecture •
- System-Level Design Methodology •


SoC Design Productivity

[Carloni, DAC 2016]


EMULATION & PROTOTYPING

- Take DECADES architecture to FPGA
- Continued design refinement
 throughout program

Multi-FPGA emulation infrastructure

• Prototype chip to de-risk architecture

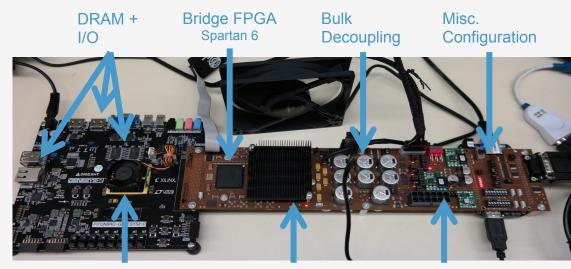
Recent 25-core manycore system built by our team

SUMMARY & IMPACT

Language/Compiler/Runtime:

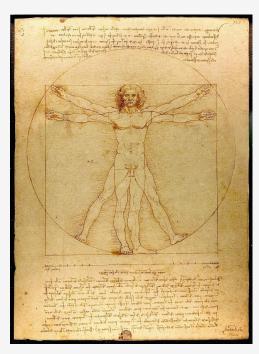
- Latency: >4X per thread performance benefits from memory data supply decoupling
- Bandwidth: Granularity management and Multiplicative outer-loop parallelism up to bandwidth limit
- Total of 50X over single-thread from software

Configurable Hardware Platform:


- Hardware speedups from accelerators for address calculation, memory fetch, or compute
- Fine-grained, low-overhead measurements drive adaptation and module depowering
- 10-20X multiplicative power/performance benefits

TECHNOLOGY TRANSFER PLANS

- Outputs:
 - Software ecosystem
 - Chip design
 - FPGA emulation system
- Technology transfer plans:
 - Release of software, hardware, and data where possible
 - Commercialization
 and licensing


Chipset FPGA Kintex 7 Test Chip + Heat Sink Power Supply

- Leverage extensive past experience:
 - Widely-used open-source software (Wattch, *Check tools, scalable QEMU)
 - Patents licensed to major companies (Power-efficient ALUs)
 - Technology transferred from academia to startups (Tilera)
 - Open-Source Hardware (OpenPiton)

TOWARDS A COMPUTER DESIGN RENAISSANCE

 The end of silicon dimensional scaling and the rise of heterogeneous reconfigurable computing bring an opportunity for a Computer Design Renaissance

...by supporting the creativity of application developers to realize innovative architectures, chips, systems and products

... through richly reconfigurable substrates and intelligent compilation and mapping

ERI ELECTRONICS RESURGENCE INITIATIVE

S U M M I T

2018 | SAN FRANCISCO, CA | JULY 23-25