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The Data Supply Challenge

• Modern computer systems are 
increasingly heterogeneous
• Accelerator-oriented 

parallelism to meet aggressive 
performance and power 
targets 
• As accelerators have sped up 

compute portions, the main 
challenge is data supply 



Data Supply = Fundamental Bottleneck in Accelerator-
Oriented Systems
• Amdahl’s Law: 

Accelerating compute 
makes data supply 
bottlenecks look 
relatively bigger!
• Key memory/comm

bottlenecks lie in 
supplying specialized 
accelerators with data
• Different apps ->  

different data supply 
needs

John McCalpin, SC’16 Keynote 
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Latency and Bandwidth:
• Accelerator often lacks general-purpose latency-

tolerance mechanisms (e.g., OoO execution, 
Multithreading)
• Improving Accelerator compute throughput increases 

memory bandwidth pressure



Our Solution
• Automatically synthesize Data Supply Systems
• Optimizing for Performance and Energy…
• In a full-stack application-specialized way…
• Addressing both latency and bandwidth



DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads 
• Enable in-memory computing

Language and Compiler 
Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained 
Reconfigurable 

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered 
Demonstration Strategy
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DECADES PLATFORM ARCHITECTURE
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DECADES Core and Accelerator tiles
• Computations mapped onto 

core tiles or available 
accelerator tiles
• Each tile is wrapped in 

monitor/reconfiguration 
shim

• Dynamic reconfiguration of 
Supply-Compute decoupling, 
power-performance 
tradeoffs, and interconnect
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DECADES Storage Specialization
• Specialization #1: 

Map apps onto mix of 
compute tiles and 
intelligent storage (IS) tiles
• Specialization #2: 

Select and configure 
appropriate storage 
features within IS
• Configurable memory 

banks + address and 
prefetching features

• Simple near-SRAM ALU

DECADES Intelligent Storage Tile

Configurable
Interconnect

Shim

FIFO Head/Tail 
Pointer Array

Intelligent DMA 
Engine

Cache Pipeline

Pattern-Based 
Prefetcher

Configurable Bank Interconnect

Performance Monitoring 
Registers

Multi-grain
Associative
Tag Array

ALU for near 
SRAM 

processing

Configurable Memory Banks



Improving Latency-Bound
Applications with 
Decoupled Execution

• Roots in seminal 1982 Smith DAE paper: 
Separately execute memory accesses (supply) 
from instructions that compute with them 
(compute)
• Then: Latency tolerance “simpler” than out-

of-order execution
• Now: Fits well with accelerator-oriented 

design
• Separate memory supply from accelerator 
• Orthogonal to DOALL parallelism and 

bandwidth optimizations
• Automatically identify and slice at compile 

time



DeSC Compiler for Decoupled Architecture

Execute 
Slice

Access
Slice

ST Buffer

Computation 
Device

(e.g., Accelerators, 
CPUs)

Cache & 
Main memory

DeSC Data Supplier
(Specialized Core)

Data Buffer
(Local memory)

Our Prior Work: DeSC

• Access Slice   ->  Specialized DeSC Data Supplier
• Accesses data from the memory and supplies data to Execute Slice
• Runahead for latency tolerance

• Execute Slice  -> Computation device
• Retrieve data sent from the Access Slice. Performs computation and

send result back to Access Slice.
• Performance: 8X better for memory bounded.  Further multiplicative speedups 

with N DOALL pairings of Access and Execute.

• DeSC: DEcouple data Supply 
from Compute to provide high 
latency tolerance without 
burdening programmers
• Decouple the target program into 

two slices with DeSC Compiler Tool

[Ham/Aragon/Martonosi, MICRO-48, 2015]



Improving Bandwidth-Bound Applications
• Scratchpad vs. Cache vs. 

Queue
• Configurable fetch 

granularity
• Customized tile-to-tile 

flow
• Application-specific 

prefetching
• Simple near-SRAM ALU
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processing

Configurable Memory Banks



Application Example: 
Graphicionado on 
DECADES

13



Our Prior Work: Graphicionado

• Application-Specific Memory Hierarchy for Bandwidth-Bound Graph Analytics
• Customized memory hierarchy to minimize off-chip memory access traffic [3x reduction]
• Dataflow pipeline based on high-level abstraction eases the programming and enables 

hardware reuse for different graph applications
• Specialized HW accelerator for graph analytics successfully achieves ~3x speedup and 50x+ 

energy saving compared to state-of-the-art software framework on 32-core CPU

[Ham et al., MICRO-49, 2016. IEEE Micro Top Picks Honorable Mention]



P2 : Read 
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Graphicionado Memory Specialization



Source-Oriented 
Data Access
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Off-chip Memory System

Source-Oriented Intelligent Storage Tiles
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• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)



Destination-Oriented Intelligent Storage Tiles

Temp Vertex 
Array

Scratchpad

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)
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Other DECADES optimizations
• Coherence domain restrictions [Fu et 

al. MICRO 2015]
• Automatic consistency/coherence 

protocol optimizations for 
heterogeneous hardware.
• Per-tile power gating, clock gating, 

and V/f scaling.
• Turn on/off NoC planes at compile-

time or runtime.
• Streamline tile-to-tile data flow
• Novel consistency and transaction 

models
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DECADES Language, 
Compiler & Runtime 
System
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LANGUAGE, COMPILER & RUNTIME SYSTEM

• Bandwidth 
optimizations 
through cache 
optimizations 
and locality/granularity 
tailoring
• Latency tolerance 

through decoupling
• Build on DeSC LLVM 

compiler infrastructure
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Combined Latency and Bandwidth Approaches
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Decouple Supply-Compute for 
Latency Tolerance

Tailor Parallelism ,Granularity, 
and Storage Structures for 
Bandwidth Optimization

Multiplicative Speedup



Simulation 
Emulation
Chip Design
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Evaluation Plans

24

• LLVM IR -> Dependence graph
• Resource limits -> Timing, Power, AreaDesign Tradeoffs & 

Lightweight Simulation

• Build on Embedded Scalable Platforms 
work [Carloni, DAC 2016]

• Direct maps to FPGAs

QEMU and FPGA 
Emulation

• Phase 2: Test Chip
• Phase 3: DECADES PrototypeChip Prototyping



High-level Simulator Approach

25

CPU Accels
On-Chip 

Intelligent 
Storage

On-Chip Interconnect

“Interleaver” Simulator

Per-Module 
Dependence 
Graph analysis 
from LLVM IR

Weave together 
individual graphs 
to form overall 
performance (or 
power) estimate



Emulation & Prototyping
• Take DECADES architecture to FPGA
• Continued design refinement throughout 

program

• Prototype chip to de-risk 
architecture

• Recent 25-core manycore
system built by our team• Multi-FPGA emulation infrastructure



Technology Transfer Plans
• Outputs:

• Software ecosystem

• Chip design

• FPGA emulation system

DRAM + 

I/O

Chipset FPGA

Kintex 7

Bridge FPGA
Spartan 6

Test Chip + 

Heat Sink

Bulk 

Decoupling

Power 

Supply

Misc. 

Configuration

• Leverage extensive past experience:

• Widely-used open-source software (Wattch, *Check tools, scalable QEMU)

• Patents licensed to major companies (Power-efficient ALUs)

• Technology transferred from academia to startups (Tilera)

• Open-Source Hardware (OpenPiton)

• Technology transfer plans:

• Release of software, hardware, 

and data 

where possible 

• Commercialization

and licensing



Summary & Impact
Language/Compiler/Runtime: 

• Latency: >4X per thread performance benefits from 
memory data supply decoupling

• Bandwidth: Granularity management and 
Multiplicative outer-loop parallelism up to bandwidth 
limit

• Total of 50X over single-thread from software

Configurable Hardware Platform:

• Hardware speedups from accelerators for address 
calculation, memory fetch, or compute

• Fine-grained, low-overhead measurements drive 
adaptation and module depowering

• 10-20X multiplicative power/performance benefits



Private Talk 
Starts Here…



Source-Oriented 
Data Access
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Off-chip Memory System

Source-Oriented Intelligent Storage Tiles

ActiveVertex
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Cache Edge ID Table

ScratchpadSequential 
Prefetcher

IS Controller
IS Controller

Edge Array

Cache

Sequential 
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IS Controller

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)



Destination-Oriented Intelligent Storage Tiles

Temp Vertex 
Array

Scratchpad

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)
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Tile Configurations for Graphicionado

Intelligent Storage (Source-Oriented)

• Intelligent Storage configured with Cache, Scratchpad and Prefetcher

EdgeIDTable
Scratchpad Storage

ActiveVertex Array
Edge Array

Cache

Sequential 
Prefetcher

Intelligent Storage (Destination-Oriented)

Temp Vertex Property
Vertex Property

Scratchpad Storage

DECADES Core Tile

IS 
Controller

processEdge()
Reduce()
Apply()

L1 Cache

Off-chip Memory System

Core

ActiveVertex
Array
Cache

Sequential 
Prefetcher

FIFO FIFOIS 
Controller

FIFO



Evaluation 
Systems 
Details…



High-level Simulator Approach
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Intelligent 
Storage
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“Interleaver” Simulator

Per-Module 
Dependence 
Graph analysis 
from LLVM IR

Weave together 
individual graphs 
to form overall 
performance (or 
power) estimate



Per-Module Graph-Based 
Performance Analysis

LLVM IR 
Graph 

Generator

Live, Arch-
independent

Profiler

Mem Address Trace
Control Flow Trace

Graph 
Scheduler/
Simulator

Performance 
estimate

Code (marked 
Region of Interest)

Graph representation 
of code



Per-Module Graph-Based 
Performance Analysis
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Model 1: ILP within a basic block only 
1. Instructions within a basic block can execute in 

parallel
2. But no other BB’s instruction can execute until 

all instructions(e.g., store c[i]) finish

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
c[i] = a[i] + b[i];

}



Model 2: Non-speculative Execution
1. Instructions within a basic block can execute in 

parallel
2. After branch outcome is obtained (i.e., br), next 

basic block can immediately start execution
3. (Or if the loop is known to be fully parallel)

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
c[i] = a[i] + b[i];

}



Model 3: Speculative Access

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
if(a[i]>50) {
b[i] = c[i] * 4 + a[i]-3;

}
else
c[i] = b[i] * 4 + a[i] *2;

}

1. Instructions within a basic block can 
execute in parallel

2. Even before the branch outcome is obtained, 
it speculatively processes the next 
(potential) basic block as long as there’s 
no data dependency



Model 4: 
Memory Dependence

for(int i=2; i<ARRAY_SIZE; i++) {
c[i] = a[i-2] + 3;
a[i] = c[i*2-4];

} 

O1. Do not process load (with 
potential alias) until previous
store is finished

O2. Do not process load until 
previous store address is ready 
(do not wait until value)

O3. Speculatively process load 
until even under the presence of 
aliasing store

c[i*2-4]

c[i]

a[i-2]

a[i]

i

Loop-
carried 
dependence

Loop-
independent

(non-consistent) 
Dependence



Language, 
Compiler, 
Runtime 

Details



Decoupling Data Supply from Computation
• Access Slice

• Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
• Computes address for STORE and updates it with STORE_ADDR.

• Execute Slice
• Retrieves data sent from Access Slice with CONSUME instruction. 
• Computes value for STORE and updates it with STORE_VAL. 

• Performance: 8X better from memory boundedness.  Further multiplicative 
speedups with N DOALL pairings of Access and Execute.

Execute Slice

for (i=0;i<N;i++) 
{
v1 = CONSUME();
v2 = CONSUME();
val = v1 + v2 * k;
STORE_VAL(val)

}

Original
Code

for (i=0;i<N;i++) {
v1 = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = v1 + v2*k;
STORE(&c[i], val)

}

Access Slice

for (i=0;i<N;i++)
{  
v1 = LOAD(&a[i]);
PRODUCE(v1);  
v2 = LOAD(&b[i]);
PRODUCE(v2);
STORE_ADDR(&c[i]);

}



Decoupling
Data Supply
from 
Computation

• DeSC Compiler slices a program into two parts: access slice and execute slice
• Inspired by seminal work: James Smith, Decoupled Access/Execute Architecture (DAE), ISCA’82

• Access Slice
• Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
• Computes address for STORE and updates it with STORE_ADDR.

• Execute Slice
• Retrieves data sent from Access Slice with CONSUME instruction. 
• Computes value for STORE and updates it with STORE_VAL. 

• Access Slice can run ahead of Execute Slice

Execute Slice

for (i=0;i<N;i++) 
{
v1 = CONSUME();
v2 = CONSUME();
val = v1 + v2 * k;
STORE_VAL(val)

}

Original
Code

for (i=0;i<N;i++) {
v1 = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = v1 + v2*k;
STORE(&c[i], val)

}

Access Slice

for (i=0;i<N;i++)
{  
v1 = LOAD(&a[i]);
PRODUCE(v1);  
v2 = LOAD(&b[i]);
PRODUCE(v2);
STORE_ADDR(&c[i]);

}



ISA Additions for 
Memory Decoupling

• CONSUME
Retrieves data from the Data 
Buffer

• STORE_VAL
Updates Store Value in ST 
Buffer

Data Supplier Special Instructions Computation Device Special Instructions 

• PRODUCE
Inserts data to the Data 
Buffer

• STORE_ADDR
Updates Store Address in ST 
Buffer

DECADES Compiler for Decoupled Architecture

Execute 
Slice

Access
Slice

ST Buffer

Computation 
Device

(e.g., Accelerators, 
CPUs)

Main Memory

Data Supplier
(Specialized Core)

Data Buffer
(Local memory)



DECADES Compiler for Decoupled Architecture

Execute 
Slice

Access
Slice

ST Buffer

Computation 
Device

(e.g., Accelerators, 
CPUs)

Main Memory

Data Supplier
(Specialized Core)

Data Buffer
(Local memory)

Decoupled Execution: Key Ideas

1. DECADES compiler automatically generates code for decoupled Data Supply 
and thus does not require programmer input for communication 
management

2. DECADES specializes general-purpose core for data supply task for higher 
performance

3. DECADES Data Supplier hardware can be used to supply data for different 
types of computation devices



Why Decoupled Optimizations?
• Use of conventional OoO core as a data supplier in DAE often fails to improve performance

• Performance is often worse than for a single core

• Significantly worse than perfect latency tolerance (single core w/ perfect L1 cache)

(Conventional OoO core)



Why Decoupled Optimizations?
• What are main problems?

1. Inefficiency in OoO core: Later instructions cannot commit if long latency load is blocking the head of the ROB

2. Loss of Decoupling Events: Data Supplier depends on computation device and has to stall

(Conventional OoO core)



Opportunities in Decoupled Access Slice

• Opportunity: Most of LOADs in a Decoupled Access Slice 

have a single PRODUCE instruction as its only dependent

• Conventional Architecture: Results of LOAD instructions 

are used for computation

Example 
Access Slice

for (i=0;i<N;i++)
{  
idx = LOAD(&a[i]);
tmp = LOAD(&b[idx]);
PRODUCE(tmp);

}

Example 
Access Slice

for (i=0;i<N;i++)
{  
idx = LOAD(&a[i]);
LOAD_PRODUCE(&b[idx]);

}

Code before marking

Terminal Loads

Code after marking

Terminal Loads

• Terminal Load: Loads whose fetched 

value is only used for the following 

PRODUCE

o Compiler converts such loads to 

LOAD_PRODUCE which has no 

dependent

• Decoupled Architecture: Results of most LOAD instructions are only used in the 

Execute Slice

• No other dependent except for the immediate PRODUCE

Load – Compute – Store

Load - Produce

Access Slice Execute Slice

Consume-Compute-Store

Non-decoupled Code



Prior Work: 
ESP, Carloni



PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

• System-Level Design Methodology

Application
Specification

Application 
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

Design-Space Exploration w/ High-Level Synthesis

Processor IP 
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration
w/ ESP Services

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• Flexible Tile-Based Architecture
In the span of 1 month:

21: student teams 
661: improved 

designs 
32: avg. number 

of improved designs per 
team    

1.5: avg. number 
of new designs 
per team/day 

99: Pareto curve changes
11: final number of 

Pareto-optimal 
designs

26x: Performance range 
10x: Area range

• SoC Design Productivity

[Carloni, DAC 2016]



Coherence Models for Loosely-Coupled Accelerators
• Most accelerators embrace the shared-memory paradigm…
• …but implement different levels of cache coherence. We classified them as:
1. Non-Coherent DMA

• Data must be flushed to memory
• Large data sets are accessed faster and without polluting caches

2. Fully-Coherent Load/Store
• A private cache is required to handle coherence transparently
• Preferred for frequent interleaving of processor and accelerator execution

3. Last Level Cache (LLC)-Coherent DMA (new)
• Data are flushed to LLC, thus reducing accesses to external memory
• Medium-sized data sets are accessed faster

4. Coherent DMA (new on NoC)
• No flush required thanks to recalls handled by the LLC on an NoC, or snooping on a bus
• Almost as fast as LLC-coherent DMA
• Better than LLC-coherent DMA for frequent interleaving of processor and accelerator 

execution



Reconfigurable Coherence for Accelerators in ESP

• First NoC-based system enabling 
the four models of coherence for 
accelerators to coexist and operate 
simultaneously through run-time 
selection in the same SoC
• Design based on ESP Platform Services 

• Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC
• The design leverages the tile-based 

architecture of ESP over a packet-
switched NoC to guarantee scalability 
and modularity
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Heterogeneous Coherence Implementation
• The CAD Infrastructure of ESP:
• direct instantiation of 

heterogeneous configurable 
components from predesigned 
libraries
• Fully automated flow from the GUI 

to bitstream for FPGAs
• Support for atomic test-and-set 

and compare-and-swap 
operations over the NoC enable:
• multi-processor and multi-

accelerator applications on top of 
Linux SMP



Heterogeneous Coherence: Experimental Setup

“The ability to have perfectly 
balanced accelerator stages is 
highly dependent on the specific 
memory access patterns, as well as 
on the system interconnect and the 
memory hierarchy, including the 
selected cache-coherence model”

• FFT1D 
– streaming memory access

• Sort 
– no temporal locality, but in-place 

(i.e. in the PLM) data processing
• FFT2D 

– Streaming read accesses and 
single-word write accesses.

• SPMV 
– asymmetric data reuse with 

irregular access pattern
– low compute-to-memory ratio



Non-Coherent vs. LLC-Coherent (single accelerator)

• Compared to non-coherent accelerators, the relative speedup of LLC-
coherent accelerators ranges between 0.5x and 4x 
• the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

• Confirmation of the benefits of runtime model selection based on footprint



Non-Coherent vs. LLC-Coherent (multiple 
accelerators)

• The average performance degraded by up to 38% and 10% for LLC-coherent 
and non-coherent accelerators, respectively 
• Confirmation that the choice of the cache-coherence model should be based 

on the ratio between the size of the aggregate memory footprint of all running 
accelerators and the capacity of the LLC



Cache-Coherence Models for Tiny Workloads
• The fully-coherent 

model can have similar 
or better performance 
than the other two 
models, but only for the 
smallest datasets
• like the LLC-coherent 

model it also reduces or 
removes memory 
accesses
• additionally, it does not 

require the flushing of 
the processors’ caches, 
which could disrupt the 
work of other 
components of the SOC



Fast-
Configurable 

LUT-based 
Tiles



DECADES Fast Reconfigurable LUT Tile

60

• CPU
• Kernel scheduling
• Codes that can’t benefit from static 

acceleration

• Memory
• Shared between CPU & 

reconfigurable array (RA)

• Reconfigurable Array
• Partitionable
• Runtime-configurable multi-context
• BRAM & arithmetic block



Array of FR-LUT Tiles

61

• NOC
• Communication between tiles 

(CPUs)
• Memory system messages

• Configurable memory system
• Integrates into DECADES tile 

array

FR-LUT
Tile

FR-LUT
Tile

FR-LUT
Tile

FR-LUT
Tile



DECADES Chip Progress
• Begun legal enablement of silicon technology acquisition (MOSIS, GF, 

Invecas)
• Brought Semiconductor Physical Design Kit (PDK) of Global Foundries GF 

14LPP (14nm) in house at Princeton
• Currently setting up design kit

• Working to acquire Hardware IP primitives needed
• Very early development of chip tool flow



Timeline and 
other issues…



Phase 1 Technical Milestones and Plans

SW/Compiler
7/18: Initial 

DeSC
integration in 

LLVM

10/18: DeSC + 
DOALL

6/19: Mem 
Granularity 

Optimizations

Architecture 
Design

8/18: Map 
Matrix Multiply 

&  
Graphicionado

12/18: in-
memory and 
near-memory 

compute

3/19: IS Tile 
Organization

6/19: Design 
Parameter 
Selections

Simulation/ 
Emulation

9/18: High-level 
sim operational

12/18: LLVM + 
HLSim

integration.
3/19: QEMU 6/19: FPGA 

Emulation

Chip Design 12/18: IS Tile 
test design

2/19: CPU test 
design

4/19: NoC test 
design

6/19: Test Chip 
design



Questions
• Demonstrate with DW (SPARC) core, but ideas apply to other ISA/Cores 

too
• Use existing compute accelerator designs wherever possible
• Eg Luca Carloni Columbia CS class

• Design or synthesize data supply accelerators, using either CPU or IS tile
• Considering use of GPU tiles for some apps
• Largely orthogonal to our primary ideas about custom data supply and 

interconnect

• OP + Accels speak AXI + ethernet, UARTS, etc
• FPGA Hardware at Columbia vs. FPGA resources in cloud



Backup slides
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PRIOR WORK: Coherence Domain Restriction Flexible Memory

• Flexible memory system on top of cache coherent system
• Enables the exact minimal communication needed
• Build incoherent coherent domains  

• Restriction on application- or page-level
• Improves performance

• Shorter network on-chip distances
• Less interfering memory coherence traffic

• Reduces energy
• Fewer on-chip network links need to be transited
• Less area dedicated to tracking cache line sharers

• Reduces area
• Track fewer sharers on large configurations
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10x: Area range

• SoC Design Productivity

[Carloni, DAC 2016]



TOWARDS A COMPUTER Design Renaissance

• The end of silicon dimensional scaling and 
the rise of heterogeneous reconfigurable computing bring 
an opportunity for a Computer Design Renaissance

• …by supporting the 
creativity of  
application developers to 
realize innovative 
architectures, 
chips, 
systems 
and products

• … through richly 
reconfigurable substrates 
and intelligent 
compilation and mapping


