DECADES:
Deeply-Customized
Accelerator-Oriented
Data Supply Systems
N ENE

Margaret Martonosi
Luca Carloni
David Wentzlaft

. 3 PRINCETON

UNIVERSITY

Gl

COLUMBIA
UNIVERSITY

DECADES: A VERTICALLY-INTEGRATED APPROACH

Language and e Enhance data locality
Compiler Support e Optimize spatial mapping of threads

: e Enable in-memory computin
Lead: Martonosi able Sery puting

Very Coarse-Grained e Coarser than CGRA = VCGRTA
Reconfigurable e 3 classes of reconfigurable tiles
Tile-Based Architecture e Reconfigurable interconnection network
Lead: Carloni e Reconfigurable in-memory computing

Multi-Tiered e Scalable full-system simulation
Demonstration Strategy e Multi-FPGA emulation infrastructure
e 225-tile DECADES chip prototype

Lead: Wentzlaff

Distribution C

DECADES PLATFORM ARCHITECTURE

EDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

t

DECADES %,

1 chip

DECADES Core Tile

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Configurable Core Pipeline
Data Supply / Compute Threads

e

DECADES Accelerator Tile

>

Configurable
Interconnect
Shims

4

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

*—»

DECADES == DECADES == DECADES == DECADES

Accelerator Core Accelerator Core
Tile Tile Tile Tile

DECADES DECADES DECADES DECADES
Core Intelligent Intelligent celerator
Tile Storage Storage e

DECADES DECADES DECADES

Accelerator Intelligent
Tile Storage

DECADES DECADES DECADES ""'-PECADES
Core Accelerator Core Akccelerator
Tile Tile Tile

v

‘T-i,!ie

E=—= Specialized, Configurable [[|
— Data Supply / Compute
— Accelerator |:| |:|
]
>

DECADES Intelligent Storage

Configurable
Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

EDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

DECADES TA1l

Heterogeneity meets coarse reconfigurability

Across-Chip Configurable
On-Chip Memory

Near-Memory
Computation

Prefetcher

Configurable Pattern-Based

;|¢

ﬂ@

>

Configurable
Interconnect
Shims

Pl

Distribution C

Project Milestones

Task Category Phasel _____ [Phase2 ____ |Phamses

Language, Compiler &
Runtime System (TA2)

Application
Development (TA1,
TA2)

Platform Architecture
(TA2, TA2)

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA1)

Technology Transfer
(TA1, TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

1.2: Transformation of Provided
Benchmarks

1.3: Initial Design of DECADES
Platform Architecture

1.4: Lightweight Simulator and
Emulator for DECADES Platform

1.5: Test chip development

1.6: Transfer of Phase 1 Results
and Deliverables

2.1: Dynamic Adaptation
in DECADES Software
Systems

2.2: Optimization of Provided
Benchmarks

2.3: Full Design of DECADES
Platform Architecture

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases

4 Distribution C

. * Compiler and Chip Development
This Talk
* Other Research Status Updates

Distribution C

Status & Approach

e Common kernels

Applications

Compilers,
Analysis and
Optimizations

e Automatic and guided
optimizations

Hardware
Desigh &
Specialization

* Tile selection and
design

Distribution C

% Runtime

% Runtime

100
80
60
40
20

100
80
60
40
20

Application Profiling: Data -> Design Plans

Training Kernel Function Runtime Breakdown

X
Q*’&\

Q
QS/

|| m Other

oy

m Batch Normalization

W Sparse Arithmetic
m Tensor Arithmetic
Activation

S Convolution
&

Inference Kernel Function Runtime Breakdown

W Other

m Batch Normalization

W Sparse Arithmetic

W Tensor Arithmetic
Activation
Convolution

W Tensor Multiplication

m Tensor Multiplication

100
90
80
70
60

% Runtime
w
=

Graphqube LocalGraph Graph Projection
Clustering

Graph (C/C++)

40
30
20
10

0

WEST

Kernel Function Runtime Breakdown

ScanStatistics SparseFuse Changepoint Geolocation
Lasso Detection

Graph (Python)

m Other Functions

m 4th Bottleneck

m 3rd Bottleneck
2nd Bottleneck
m 1st Bottleneck

Vehicle Routing Glucose

Combinatorics
(C/C++)

Applications Mapping to DECADES

Applications

DECADES features for acceleration

convoluti vector

on

arith

Acceleratortile

matrix graph ... SOCP map
statistics

arith utilities equations /reduce

efficient data prefetching
streaming

graph data

Memorytile

refetchin
P 6 temp data for inter

accelerator comm
formulas

in-memory /
near-memory
computation

Processor tile

prefetching
graph data

3D segmentation
Pythia

Text classification
Glove

Reptile
Vehiclerouting
Geolocation

Scan statistics

Local graph clustering
Sparse fused lasso
Graph projections
Graph classification
WEST

Glucose

Graph query-by-example
Changepoint detection

X
X

< <X X X

X
X

< <X X X

Example Mappings to DECADES

For given src, extract pair
of neighbors and weights

Source Partition 1

Source Partition 2

Source partition n

DECADES neural network solution
for Reptile application

512x28x 28 Image inputs

Update new edges if present
insert() new edges otherwise

I:I DECADES Intelligent Storage

- DECADES Core Tile

Vertex Partition 1
Vertex Partition 2

- (\‘0};\ T =
‘&;‘gﬁ,“ ¢ Compute Engine
o\
N ScratchPad

Vertex Partition n

4

Convolution | | o.) eax3 512x64x3 64x3
Accelerator
[|DECADES Inteligent Storage
[| DECADES Core Tile
[| DECADES Accslerator Til Intelligent Storage Tiles optimized)
for the output/inputsizes of neural Reptlle

network compute operations

Off-chip Memory System

Graph Projections

Distribution C 9

. * Compiler and Chip Development
This Talk
* Other Research Status Updates

DECADES Compiler

* Working prototype
* LLVM/CLANG

Intelligent
Storage Tile

Accelerator Tile

Compiler identifies or
produces code to be
executed on DECADES
tiles.

Kernel source code
consists of a sequence
of instructions.

Proposes an efficient
mapping to available tiles.

Distribution C 11

DECADES Compiler:
Decoupling Supply/Compute

Compute_Kernel does not
access memory, is only for
efficient computation

Intelligent
Storage Tile

Supply_Kernel does not
compute, is only for
efficient memory accesses.

Distribution C 12

Terminal Loads & Decoupled Supply-Compute

SHOC terminal loads % SDH teminal loads %
100

100 100 100

100 100

90 90

80 80

70 70 65.82

60 60

50 46 50

4 40

3 30

2 20

10.62
1 10 3.49
0.12
:] —
gemm sort triad san stencil

o

o

o

o

0

graph projection graphqube wfst fasttext

* SDH apps have fewer Terminal loads (load for which supply kernel does
not need load return values) than SHOC

* => Decouple at a coarser granularity:

* Do not decouple all memory operations, allowing Supply Kernel to have more
terminal loads and execute sufficiently ahead of Compute Kernel.

DECADES Library Interfaces

* Building up DECADES library and API

* Program annotations +
* Efficient implementations/mappings of common kernels. e.g., convolution.
* Map to accelerator tile + memory wrappers

Compiler identifies common APIs
(e.g. CuDNN) and substitutes
DECADES library alternative

Convolution
Accelerator Tile

Common libraries can
be mapped to a
hardwired accelerator | == = = = = =
tile

Convolution in ALL SDH apps

is through a high-level API:
* Tenserflow

* PyTorch Contains DECADES
implementations/mappings

Project Milestones

15

Language, Compiler &
Runtime System (TA2)

Application
Development (TA1,
TA2)

Platform Architecture
(TA2, TA2)

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA

Technology Transfer
(TA1, TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

1.2: Transformation of Provided
Benchmarks

1.3: Initial Design of DECADES
Platform Architecture

: LighbweigireSmaulator and
ulator for DECADES Pla

1.6" asfer of Ph
and Deliverables

2.1: Dynamic Adaptation
in DECADES Software
Systems

2.2: Optimization of Provided
Benchmarks

2.3: Full Design of DECADES
Platform Architecture

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases

Planned DECADES Test Chip: Early 2020

* 9mm2 GF 14nm
 Sample of tiles
* Heterogeneous CPUs

* Tiles connected with multi-plane
on-chip 2D Mesh network

* [ntelligent memory tiles support
optimized inter-tile data
movement

Ariane Modified
Accel Accelerator Accelerator
o S 64-bit RisC-V e OpenSPARC o
Ii€ Core T1 Core
Intelligent Intelligent Intelligent
Modified Memory Tile Memory Tile Memory Tile Ariane
OpenSPARC Managed by Managed by Managed by 64-bit RISC-V
T1 Core PicoRV32 PicoRV32 PicoRV32 Core
RISC-V Core RISC-V Core RISC-V Core
Intelligent Intelligent Intelligent »
Ariane Memory Tile Memory Tile Memory Tile Modified
64-bit RISC-V Managed by Managed by Managed by OpenSPARC
Core PicoRV32 PicoRV32 PicoRV32 T1 Core
RISC-V Core RISC-V Core RISC-V Core
Modified Ariane
Accelerator Embedded Accelerator
: OpenSPARC : 64-bit RISC-V :
Tile FPGA Tile Tile
T1 Core Core
Intelligent
Modified Memory Tile Ariane
Embedded Accelerator :
OpenSPARC EPGA Tile Managed by Tile 64-bit RISC-V
T1 Core PicoRV32 Core
RISC-V Core

Off Chip Memory System with In-Memory
Computation implemented in FPGA

Distribution C 15

DECADES Test Chip: CPU Heterogeneity

* Heterogeneity enables matching performance/energy profile to application phase

 DECADES Mixture of three core type
* OpenSPARC T1 multithreaded core

e Multithreaded efficiency .
* Full Stack OS 1 -~ ® %
* Ariane 64-bit RISC-V core C)perl—-D + Arla ne 7y ¢ P
* Decent performance 64-bit core
* PicoRV32 32-bit RISC-V microcontroller
» Area and Power-efficient/Low performance core drives intelligent storage
* Specialized accelerator tiles
* Ex: Convolution accelerator

* All cores and accelerators use common DECADES memory system with orchestrated
data movement

* Leverage JuxtaPiton Expertise: Open-source, general-purpose, heterogeneous-ISA
processor

e Shared memory between 64-bit OpenSPARC T1 and 32-bit PicoRV32 cores
* Boots Linux on OpenSPARC T1, offloads 32-bit RISC-V binaries to low-power PicoRV32 core

. * Compiler and Chip Development
This Talk
* Other Research Status Updates

DECADES

4

ATFORM A

fDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

N

chip

DECADES %

DECADES
Core
Tile

DECADES
Accelerator

DECADES
Col

DECADES
Core
Tile

DECADES DECADES

Accelerator Intelligent
Tile Storage

DECADES DECADES DECADES D ECADES
Core Accelerator Core Accelerator
Tile Tile Tile

v

‘T-i‘!_e

fDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

DECADES TA1l

ITECTURE

DECADES Core Tile

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Configurable Core Pipeline

Data Supply / Compute Threads

DECADES Accelerator Tile

>

Configurable

Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Specialized, Configurable
Data Supply / Compute

Accelerator

[]
]

e

DECADES Intelligent Storage

>

Configurable
Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Across-Chip Configurable
On-Chip Memory

Near-Memory
Computation

Prefetcher

Configurable Pattern-Based

I

e

>

Configurable
Interconnect
Shims

Pl

Bit-Serial SIMD

Scalar Control

Processor

Scalar
RF

Tey

Bit-Serial
ALU

—

Microcode ROM

Vector Register File

A A4

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

e Bit-Serial: Calculations on bit-level instead of word-level

e Similar to breaking instructions into micro-operations
* Dramatic reduction in datapath hardware

* Overhead in latency and control logic

 Bit-Serial SIMD Exploit efficient datapath

e Can fit many ALUs in a small area

* Enable very wide SIMD parallelism — exploit data-level parallelism

* Mitigate latency overhead by improving throughput

* Minimize control logic overhead
* Energy-efficient

Bit-Serial
ALU

[Jackson & Wentzlaff]

Bit-Serial SIMD->Near-Memory Compute in
DECADES

* Goal: Minimize data movement between memory and core by performing
computation close to memory

* Opportunity: Small per-element computation on large data structure
* FastText

* Glucose

* Opportunity: Searching through large structures (finding a ne IE

haystack) B

* Graphqube rwiruiw 2
* MapReduce SESE _4dl
* Graph Projection 1

* Opportunity: Large numbers of indirect references il ol =
e Glucose :Egggs DDDDDDD w DDDDDDD =|
* BFS g

DECAli(S TAL

[Jackson & Wentzlaff]

Accelerator Integration in DECADES Architectures

NoC

How are accelerators integrated in S processor —

the DECADES architecture? o g N Y L1 cache I

* Hardware Integration =~ ¢¢ "

]] ° ° ® ® =

* Reconfigurable interface socket e — j"‘*‘e T Fiosh

* Software Integration S T Je— coherence 1O/RQ
* Invocation and (re)-configuration acc mem NoC

through Linux device drivers R \ p APRAM,

* Interaction with Memory

) accelerator PLM mem. ctrl
H lerarc hy read /write port confingor’r done - ¢I I i >

* Support for coexistence of 3 main coche B __DMA cfg IRQ LC& T -

het h del = TLB = c’rrl regs directory == I 1l 3
eterogeneous coherence models b \ Al

e Run-time algorithm to select the °°§fi;,?:st LL 'OG'ES RS mbes ‘RS
optimal coherence model at each
accelerator invocation NoC s fully coherent

mmm | LC coherent
mmE non coherent

Publications: [Giri et al., IEEE Micro’18] [Giri et al., NOCS’18] [Giri et al., ASPDAC’19]

Integrating Heterogeneous CPUs and Memory

Consistency Models

* Increasing heterogeneous parallelism -
challenging to integrate hardware with
heterogeneous memory models

* Key insight: hardware generally wants to
support high-level language programs,
e.g. C/C++

* MemGlue approach:

* Consistency protocol designed to enforce
C/C++ MCM requirements for a
heterogeneously parallel system with
minimal added hardware

* Enables fine-grained communication
between heterogeneous system components

Accelerat ALLED Accelerator MR Accelerator
Cc?r.elra SN 64-bit RISC- e OpenSPARC o
e V Core T1 Core
Modified el e intellizent Ariane
OpenSPARC I\/I:::ol;ge'rlj;cle MZT’Eolfe?itle MZniol;ge'?ile i HG
T1 Core v v v V Core
Ariane intell el intellizent Modified
Serlelft e Mre]:olr'ge':'];cle MZ:Eolfe?itle MZniol;ge'?ile CPAISAE
V Core v Y Y T1 Core
Modified Ariane
E Accel
Accelerator || o) sparc | Ikl ITTRST Ao | /\ccelerator
Tile FPGA Tile Tile
T1 Core V Core

Modified
OpenSPARC
T1 Core

Embedded

FPGA Tile

Intelligent
Memory Tile

Accelerator
Tile

Ariane
64-bit RISC-

V Core

Off Chip Memory System with In-Memory
Computation implemented in FPGA

[Trippel, Manocha & Martonosi]

MemGlue Consistency/Coherence Shims

* Heterogeneous cluster (i.e. cluster vnrvie) Lo
accelerators which share a localize S CPU CPU
« MemGlue integrates clusters with | cFU

» Consistency shims (i.e. shims) per-cli
outside memory system = TTTTTTTTTTTmoooooyoooootTomToomoommooooodooooooooTootoooes

» Consistency controller (i.e. CC) to int

MemGlue ST MemGlue

Consistency Controller (CC)

MemGlue Status and Performance Expectations

 Baseline MemGlue:

* Timestamps (ts) instead of invalidation messages = eliminates traffic due to
invalidations

* Minimal storage requirements = ts for each cache line in the LLC of each cluster;
sharer list in the CC
* MemGlue exploration and optimizations:

* Explore methods for sending writes to CC only at sync point = minimize update
traffic

* Explore optimal buffer size 2 minimize traffic due to full shim buffers

* Performance expectation: achieve heterogeneous consistency
performance approx. equal to the performance of the cluster with the
strongest MCM

* Other goals: prove MemGlue properties using formal techniques

Project Milestones

26

Language, Compiler &
Runtime System (TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

Application 1.2: Transformation of Provided 2.2: Optimization of Provided
Development (TA1, Benchmarks Benchmarks

TA2)

Platform Architecture 1.3: Initial Design of DECADES 2.3: Full Design of DECADES
(TA2, TA2) Platform Architecture Platform Architecture

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA1)

1.4: Lightweight Simulator and
Emulator for DECADES Platform

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

1.6: Transfer of Phase 1 Results
and Deliverables

Technology Transfer
(TA1, TA2)

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases

Technology Transfer Plans & Status

* Qutputs:
e Software ecosystem
* Chip design
* FPGA emulation system

e Status:

* Moved OpenPiton to github

 Released two versions of
OpenPiton
* Support for JuxtaPiton (PicoRV32)

* Support for Ariane (64-bit
RISC-V core)

* QEMU Instrumentation Plane

e Before July 1:

e DECADES Compiler + Pythia
Simulator

* One more OpenPiton release

Conclusions

* Compiler:
* Working prototype with ongoing feature additions

* Hardware:
* Several tile designs ready. More soon.

e Simulation/Emulation:
* Lightweight simulator: Pythia
* QEMU Instrumentation plane
* FPGA Emulation

