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DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads 
• Enable in-memory computing

Language and 
Compiler Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained 
Reconfigurable 

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered 
Demonstration Strategy

Lead: Martonosi

Lead: Carloni

Lead: Wentzlaff
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DECADES PLATFORM ARCHITECTURE
3
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Heterogeneity meets coarse reconfigurability
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Project Milestones
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Task Category Phase 1 Phase 2 Phase 3
Language, Compiler & 
Runtime System (TA2)

1.1: Initial Design of DECADES 
Language, Compiler and 
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic 
Optimization in DECADES 
Language, Compiler, Runtime 
SYstem

Application 
Development (TA1, 
TA2)

1.2: Transformation of Provided 
Benchmarks

2.2: Optimization of Provided 
Benchmarks

3.2: Full benchmark 
characterization on DECADES 
Hardware

Platform Architecture 
(TA2, TA2)

1.3: Initial Design of DECADES 
Platform Architecture

2.3: Full Design of DECADES 
Platform Architecture

3.3: Optimization and Scaling of 
DECADES Platform Architecture

Simulation and 
Emulation (TA1, TA2)

1.4: Lightweight Simulator and 
Emulator for DECADES Platform

2.4: Full-system Simulator and 
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based 
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System 
Demonstration

Technology Transfer 
(TA1, TA2)

1.6: Transfer of Phase 1 Results 
and Deliverables

2.6: Transfer of Phase 1 and 
Phase 2 Results and 
Deliverables

3.6: Transfer of Results and 
Deliverables from all three phases

4 Distribution C



This Talk • Compiler and Chip Development
• Other Research Status Updates
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Status & Approach

• Common kernelsApplications

• Automatic and guided 
optimizations

Compilers, 
Analysis and 

Optimizations

• Tile selection and 
design

Hardware 
Design & 

Specialization

Distribution C



Application Profiling: Data -> Design Plans

Graph (C/C++) Graph (Python) Combinatorics 

(C/C++)
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Applications Mapping to DECADES
Processor tile

convoluti
on

vector 
arith

matrix 
arith

graph 
utilities

statistics
SOCP 
equations

map 
/reduce

efficient data 
streaming

prefetching 
graph data

prefetching 
SAT 
formulas

temp data for inter 
accelerator comm

in-memory / 
near-memory 
computation

prefetching 
graph data

3D segmentation X X
Pythia X X X X
Text classification X X X
Glove X X
Reptile X X X
Vehicle routing X
Geolocation X X X
Scan statistics X X X
Local graph clustering X X
Sparse fused lasso X X X
Graph projections X X
Graph classification X X
WFST X X
Glucose X
Graph query-by-example X X X
Changepoint detection X X X

DECADES features for acceleration
Accelerator tile Memory tile

Applications

Distribution C  8



Example Mappings to DECADES

Graph Projections

Reptile
Distribution C  9



This Talk • Compiler and Chip Development
• Other Research Status Updates



DECADES Compiler
• Working prototype
• LLVM/CLANG

Kernel() {
Inst0;
Inst1;
Inst2;
Inst3;
Inst4;
...
Instn;

}

Kernel source code
consists of a sequence 
of instructions.

DECADES 
Compiler

Kernel() {
Inst0’;
DEC_TILE_0();
Inst2’;
DEC_TILE_1();
...
Instn’;

}

DEC_TILE_0() {
Inst1’;

}

DEC_TILE_1() {
Inst3’;
Inst4’;

}

Compiler identifies or 
produces code to be 

executed on DECADES 
tiles. 

Mapping:
Kernel – Core
DEC_TILE_0 – Intelligent Storage
DEC_Tile_1 - Accelerator

Proposes an efficient 
mapping to available tiles.

Core Tile

Intelligent 
Storage Tile

Accelerator Tile

Distribution C  11



DECADES Compiler:
Decoupling Supply/Compute

Kernel() {
...
x = LOAD(addr0);
... //compute
STORE(y,addr1);
...

}

DECADES 
Compiler

Supply_Kernel() {
...
LOAD(addr0);
STORE(addr1);
...

}

Compute_Kernel() {
...
x = Consume();
... //compute
Produce(y);
...

}

Supply_Kernel does not 
compute, is only for 

efficient memory accesses.

Compute_Kernel does not 
access memory, is only for 

efficient computation

Mapping:
Supply_kernel – Intelligent Storage
Compute_kernel - Core

Core Tile

Intelligent 
Storage Tile

Implemented in DECADES Clang/LLVM based compiler
Can automatically decouple SHOC, Parboil 
microbenchmarks, WFST, Graph Projections, Graphqube, 
FastText

Distribution C  12



Terminal Loads & Decoupled Supply-Compute

• SDH apps have fewer Terminal loads (load for which supply kernel does 
not need load return values) than SHOC

• => Decouple at a coarser granularity:
• Do not decouple all memory operations, allowing Supply_Kernel to have more

terminal loads and execute sufficiently ahead of Compute_Kernel.
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DECADES Library Interfaces
• Building up DECADES library and API
• Program annotations + 
• Efficient implementations/mappings of common kernels. e.g., convolution.
• Map to accelerator tile + memory wrappers

Kernel() {
...
CuDNN_conv();
...
}

DECADES 
Compiler

DECADES 
Library

Convolution in ALL SDH apps
is through a high-level API:
• CuDNN
• Tenserflow
• PyTorch

Compiler identifies common APIs 
(e.g. CuDNN) and substitutes 
DECADES library alternative

Contains DECADES 
implementations/mappings

Kernel() {
...
DEC_conv();
...
}

Mapping:
DEC_conv() – DECADES convolution accelerator tile

Convolution 
Accelerator Tile

Common libraries can 
be mapped to a 

hardwired accelerator 
tile



Project Milestones
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Task Category Phase 1 Phase 2 Phase 3
Language, Compiler & 
Runtime System (TA2)

1.1: Initial Design of DECADES 
Language, Compiler and 
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic 
Optimization in DECADES 
Language, Compiler, Runtime 
SYstem

Application 
Development (TA1, 
TA2)

1.2: Transformation of Provided 
Benchmarks

2.2: Optimization of Provided 
Benchmarks

3.2: Full benchmark 
characterization on DECADES 
Hardware

Platform Architecture 
(TA2, TA2)

1.3: Initial Design of DECADES 
Platform Architecture

2.3: Full Design of DECADES 
Platform Architecture

3.3: Optimization and Scaling of 
DECADES Platform Architecture

Simulation and 
Emulation (TA1, TA2)

1.4: Lightweight Simulator and 
Emulator for DECADES Platform

2.4: Full-system Simulator and 
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based 
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System 
Demonstration

Technology Transfer 
(TA1, TA2)

1.6: Transfer of Phase 1 Results 
and Deliverables

2.6: Transfer of Phase 1 and 
Phase 2 Results and 
Deliverables

3.6: Transfer of Results and 
Deliverables from all three phases



Planned DECADES Test Chip: Early 2020
• 9mm2 GF 14nm
• Sample of tiles
• Heterogeneous CPUs
• Tiles connected with multi-plane 

on-chip 2D Mesh network
• Intelligent memory tiles support 

optimized inter-tile data 
movement

Ariane
64-bit RISC-V 

Core

Modified 
OpenSPARC

T1 Core

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator 
Tile

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator 
Tile

Modified 
OpenSPARC

T1 Core

Embedded 
FPGA Tile

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator 
Tile

Ariane
64-bit RISC-V 

Core

Ariane
64-bit RISC-V 

Core

Modified 
OpenSPARC

T1 Core

Accelerator 
Tile

Ariane
64-bit RISC-V 

Core

Modified 
OpenSPARC

T1 Core

Accelerator 
Tile

Embedded 
FPGA Tile

Accelerator 
Tile

Ariane
64-bit RISC-V 

Core

Modified 
OpenSPARC

T1 Core

Intelligent 
Memory Tile
Managed by

PicoRV32
RISC-V Core

Off Chip Memory System with In-Memory 
Computation implemented in FPGA Distribution C  15



DECADES Test Chip: CPU Heterogeneity
• Heterogeneity enables matching performance/energy profile to application phase
• DECADES Mixture of three core type

• OpenSPARC T1 multithreaded core
• Multithreaded efficiency
• Full Stack OS

• Ariane 64-bit RISC-V core
• Decent performance 64-bit core

• PicoRV32 32-bit RISC-V microcontroller
• Area and Power-efficient/Low performance core drives intelligent storage

• Specialized accelerator tiles
• Ex: Convolution accelerator

• All cores and accelerators use common DECADES memory system with orchestrated 
data movement
• Leverage JuxtaPiton Expertise: Open-source, general-purpose, heterogeneous-ISA 

processor
• Shared memory between 64-bit OpenSPARC T1 and 32-bit PicoRV32 cores
• Boots Linux on OpenSPARC T1, offloads 32-bit RISC-V binaries to low-power PicoRV32 core

Distribution C  17
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DECADES PLATFORM ARCHITECTURE
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Bit-Serial SIMD

• Bit-Serial: Calculations on bit-level instead of word-level
• Similar to breaking instructions into micro-operations
• Dramatic reduction in datapath hardware
• Overhead in latency and control logic

• Bit-Serial SIMD Exploit efficient datapath
• Can fit many ALUs in a small area

• Enable very wide SIMD parallelism – exploit data-level parallelism
• Mitigate latency overhead by improving throughput
• Minimize control logic overhead
• Energy-efficient

[Jackson & Wentzlaff]



Bit-Serial SIMD->Near-Memory Compute in 
DECADES

• Goal: Minimize data movement between memory and core by performing 
computation close to memory
• Opportunity: Small per-element computation on large data structure
• FastText
• Glucose

• Opportunity: Searching through large structures (finding a needle in a 
haystack)
• Graphqube
• MapReduce
• Graph Projection

• Opportunity: Large numbers of indirect references
• Glucose
• BFS
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Accelerator Integration in DECADES Architectures
How are accelerators integrated in 
the DECADES architecture?
• Hardware Integration
• Reconfigurable interface socket

• Software Integration
• Invocation and (re)-configuration 

through Linux device drivers
• Interaction with Memory 

Hierarchy
• Support for coexistence of 3 main 

heterogeneous coherence models
• Run-time algorithm to select the 

optimal coherence model at each 
accelerator invocation

Publications: [Giri et al., IEEE Micro’18] [Giri et al., NOCS’18] [Giri et al., ASPDAC’19]



Integrating Heterogeneous CPUs and Memory 
Consistency Models
• Increasing heterogeneous parallelism à

challenging to integrate hardware with 
heterogeneous memory models
• Key insight: hardware generally wants to 

support high-level language programs, 
e.g. C/C++
• MemGlue approach:
• Consistency protocol designed to enforce 

C/C++ MCM requirements for a 
heterogeneously parallel system with 
minimal added hardware

• Enables fine-grained communication 
between heterogeneous system components
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64-bit RISC-

V Core

Modified 
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V Core
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Modified 
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Modified 
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Accelerator 
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Embedded 
FPGA Tile

Accelerator 
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Ariane
64-bit RISC-

V Core

Modified 
OpenSPARC

T1 Core

Intelligent 
Memory Tile

Off Chip Memory System with In-Memory 
Computation implemented in FPGA

[Trippel, Manocha & Martonosi]



MemGlue Consistency/Coherence Shims
• Heterogeneous cluster (i.e. cluster): Any set of homogeneous cores or 

accelerators which share a localized memory hierarchy
• MemGlue integrates clusters with minimal hardware support:
• Consistency shims (i.e.  shims) per-cluster to interface between local cluster and 

outside memory system
• Consistency controller (i.e. CC) to interface between shims



MemGlue Status and Performance Expectations
• Baseline MemGlue:
• Timestamps (ts) instead of invalidation messages à eliminates traffic due to 

invalidations
• Minimal storage requirements à ts for each cache line in the LLC of each cluster; 

sharer list in the CC
• MemGlue exploration and optimizations:
• Explore methods for sending writes to CC only at sync point à minimize update 

traffic
• Explore optimal buffer size à minimize traffic due to full shim buffers

• Performance expectation: achieve heterogeneous consistency 
performance approx. equal to the performance of the cluster with the 
strongest MCM
• Other goals: prove MemGlue properties using formal techniques



Project Milestones
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Task Category Phase 1 Phase 2 Phase 3
Language, Compiler & 
Runtime System (TA2)

1.1: Initial Design of DECADES 
Language, Compiler and 
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic 
Optimization in DECADES 
Language, Compiler, Runtime 
SYstem

Application 
Development (TA1, 
TA2)

1.2: Transformation of Provided 
Benchmarks

2.2: Optimization of Provided 
Benchmarks

3.2: Full benchmark 
characterization on DECADES 
Hardware

Platform Architecture 
(TA2, TA2)

1.3: Initial Design of DECADES 
Platform Architecture

2.3: Full Design of DECADES 
Platform Architecture

3.3: Optimization and Scaling of 
DECADES Platform Architecture

Simulation and 
Emulation (TA1, TA2)

1.4: Lightweight Simulator and 
Emulator for DECADES Platform

2.4: Full-system Simulator and 
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based 
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System 
Demonstration

Technology Transfer 
(TA1, TA2)

1.6: Transfer of Phase 1 Results 
and Deliverables

2.6: Transfer of Phase 1 and 
Phase 2 Results and 
Deliverables

3.6: Transfer of Results and 
Deliverables from all three phases



Technology Transfer Plans & Status
• Outputs:
• Software ecosystem
• Chip design
• FPGA emulation system

DRAM + 
I/O

Chipset FPGA
Kintex 7

Bridge FPGA
Spartan 6

Test Chip + 
Heat Sink

Bulk 
Decoupling

Power 
Supply

Misc. 
Configuration

• Status:
• Moved OpenPiton to github
• Released two versions of 

OpenPiton
• Support for JuxtaPiton (PicoRV32)
• Support for Ariane (64-bit 

RISC-V core)
• QEMU Instrumentation Plane
• Before July 1:

• DECADES Compiler + Pythia 
Simulator

• One more OpenPiton release



Conclusions
• Compiler:
• Working prototype with ongoing feature additions

• Hardware:
• Several tile designs ready.  More soon.

• Simulation/Emulation:
• Lightweight simulator: Pythia
• QEMU Instrumentation plane
• FPGA Emulation
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