
DECADES:
Deeply-Customized
Accelerator-Oriented
Data Supply Systems
Synthesis

Margaret Martonosi
Luca Carloni
David Wentzlaff

DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads
• Enable in-memory computing

Language and
Compiler Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained
Reconfigurable

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered
Demonstration Strategy

Lead: Martonosi

Lead: Carloni

Lead: Wentzlaff
Distribution C

DECADES PLATFORM ARCHITECTURE
3

Distribution Statement

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Heterogeneity meets coarse reconfigurability
Distribution C

Project Milestones
4

Task Category Phase 1 Phase 2 Phase 3
Language, Compiler &
Runtime System (TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

Application
Development (TA1,
TA2)

1.2: Transformation of Provided
Benchmarks

2.2: Optimization of Provided
Benchmarks

3.2: Full benchmark
characterization on DECADES
Hardware

Platform Architecture
(TA2, TA2)

1.3: Initial Design of DECADES
Platform Architecture

2.3: Full Design of DECADES
Platform Architecture

3.3: Optimization and Scaling of
DECADES Platform Architecture

Simulation and
Emulation (TA1, TA2)

1.4: Lightweight Simulator and
Emulator for DECADES Platform

2.4: Full-system Simulator and
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System
Demonstration

Technology Transfer
(TA1, TA2)

1.6: Transfer of Phase 1 Results
and Deliverables

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.6: Transfer of Results and
Deliverables from all three phases

4 Distribution C

This Talk • Compiler and Chip Development
• Other Research Status Updates

Distribution C

Status & Approach

• Common kernelsApplications

• Automatic and guided
optimizations

Compilers,
Analysis and

Optimizations

• Tile selection and
design

Hardware
Design &

Specialization

Distribution C

Application Profiling: Data -> Design Plans

Graph (C/C++) Graph (Python) Combinatorics

(C/C++)

0

20

40

60

80

100

Fas
t T

ext

Pyth
ia

REP
TI

LE 3D…

%
 R

u
n

ti
m

e

Inference Kernel Function Runtime Breakdown

Other

Batch Normalization

Sparse Arithmetic

Tensor Arithmetic

Activation

Convolution

Tensor Multiplication

0

20

40

60

80

100

Fas
t T

ext

G
lo

ve

Pyth
ia

REP
TI

LE 3D…

G
ra

ph…

%
 R

u
n

ti
m

e

Training Kernel Function Runtime Breakdown

Other

Batch Normalization

Sparse Arithmetic

Tensor Arithmetic

Activation

Convolution

Tensor Multiplication

Applications Mapping to DECADES
Processor tile

convoluti
on

vector
arith

matrix
arith

graph
utilities

statistics
SOCP
equations

map
/reduce

efficient data
streaming

prefetching
graph data

prefetching
SAT
formulas

temp data for inter
accelerator comm

in-memory /
near-memory
computation

prefetching
graph data

3D segmentation X X
Pythia X X X X
Text classification X X X
Glove X X
Reptile X X X
Vehicle routing X
Geolocation X X X
Scan statistics X X X
Local graph clustering X X
Sparse fused lasso X X X
Graph projections X X
Graph classification X X
WFST X X
Glucose X
Graph query-by-example X X X
Changepoint detection X X X

DECADES features for acceleration
Accelerator tile Memory tile

Applications

Distribution C 8

Example Mappings to DECADES

Graph Projections

Reptile
Distribution C 9

This Talk • Compiler and Chip Development
• Other Research Status Updates

DECADES Compiler
• Working prototype
• LLVM/CLANG

Kernel() {
Inst0;
Inst1;
Inst2;
Inst3;
Inst4;
...
Instn;

}

Kernel source code
consists of a sequence
of instructions.

DECADES
Compiler

Kernel() {
Inst0’;
DEC_TILE_0();
Inst2’;
DEC_TILE_1();
...
Instn’;

}

DEC_TILE_0() {
Inst1’;

}

DEC_TILE_1() {
Inst3’;
Inst4’;

}

Compiler identifies or
produces code to be

executed on DECADES
tiles.

Mapping:
Kernel – Core
DEC_TILE_0 – Intelligent Storage
DEC_Tile_1 - Accelerator

Proposes an efficient
mapping to available tiles.

Core Tile

Intelligent
Storage Tile

Accelerator Tile

Distribution C 11

DECADES Compiler:
Decoupling Supply/Compute

Kernel() {
...
x = LOAD(addr0);
... //compute
STORE(y,addr1);
...

}

DECADES
Compiler

Supply_Kernel() {
...
LOAD(addr0);
STORE(addr1);
...

}

Compute_Kernel() {
...
x = Consume();
... //compute
Produce(y);
...

}

Supply_Kernel does not
compute, is only for

efficient memory accesses.

Compute_Kernel does not
access memory, is only for

efficient computation

Mapping:
Supply_kernel – Intelligent Storage
Compute_kernel - Core

Core Tile

Intelligent
Storage Tile

Implemented in DECADES Clang/LLVM based compiler
Can automatically decouple SHOC, Parboil
microbenchmarks, WFST, Graph Projections, Graphqube,
FastText

Distribution C 12

Terminal Loads & Decoupled Supply-Compute

• SDH apps have fewer Terminal loads (load for which supply kernel does
not need load return values) than SHOC

• => Decouple at a coarser granularity:
• Do not decouple all memory operations, allowing Supply_Kernel to have more

terminal loads and execute sufficiently ahead of Compute_Kernel.

100

46

100 100 100

0

10

20

30

40

50

60

70

80

90

100

gemm sort triad scan stencil

SHOC terminal loads %

10.62

3.49
0.12

65.82

0

10

20

30

40

50

60

70

80

90

100

graph projection graphqube wfst fasttext

SDH teminal loads %

DECADES Library Interfaces
• Building up DECADES library and API
• Program annotations +
• Efficient implementations/mappings of common kernels. e.g., convolution.
• Map to accelerator tile + memory wrappers

Kernel() {
...
CuDNN_conv();
...
}

DECADES
Compiler

DECADES
Library

Convolution in ALL SDH apps
is through a high-level API:
• CuDNN
• Tenserflow
• PyTorch

Compiler identifies common APIs
(e.g. CuDNN) and substitutes
DECADES library alternative

Contains DECADES
implementations/mappings

Kernel() {
...
DEC_conv();
...
}

Mapping:
DEC_conv() – DECADES convolution accelerator tile

Convolution
Accelerator Tile

Common libraries can
be mapped to a

hardwired accelerator
tile

Project Milestones
15

Task Category Phase 1 Phase 2 Phase 3
Language, Compiler &
Runtime System (TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

Application
Development (TA1,
TA2)

1.2: Transformation of Provided
Benchmarks

2.2: Optimization of Provided
Benchmarks

3.2: Full benchmark
characterization on DECADES
Hardware

Platform Architecture
(TA2, TA2)

1.3: Initial Design of DECADES
Platform Architecture

2.3: Full Design of DECADES
Platform Architecture

3.3: Optimization and Scaling of
DECADES Platform Architecture

Simulation and
Emulation (TA1, TA2)

1.4: Lightweight Simulator and
Emulator for DECADES Platform

2.4: Full-system Simulator and
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System
Demonstration

Technology Transfer
(TA1, TA2)

1.6: Transfer of Phase 1 Results
and Deliverables

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.6: Transfer of Results and
Deliverables from all three phases

Planned DECADES Test Chip: Early 2020
• 9mm2 GF 14nm
• Sample of tiles
• Heterogeneous CPUs
• Tiles connected with multi-plane

on-chip 2D Mesh network
• Intelligent memory tiles support

optimized inter-tile data
movement

Ariane
64-bit RISC-V

Core

Modified
OpenSPARC

T1 Core

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator
Tile

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator
Tile

Modified
OpenSPARC

T1 Core

Embedded
FPGA Tile

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Accelerator
Tile

Ariane
64-bit RISC-V

Core

Ariane
64-bit RISC-V

Core

Modified
OpenSPARC

T1 Core

Accelerator
Tile

Ariane
64-bit RISC-V

Core

Modified
OpenSPARC

T1 Core

Accelerator
Tile

Embedded
FPGA Tile

Accelerator
Tile

Ariane
64-bit RISC-V

Core

Modified
OpenSPARC

T1 Core

Intelligent
Memory Tile
Managed by

PicoRV32
RISC-V Core

Off Chip Memory System with In-Memory
Computation implemented in FPGA Distribution C 15

DECADES Test Chip: CPU Heterogeneity
• Heterogeneity enables matching performance/energy profile to application phase
• DECADES Mixture of three core type

• OpenSPARC T1 multithreaded core
• Multithreaded efficiency
• Full Stack OS

• Ariane 64-bit RISC-V core
• Decent performance 64-bit core

• PicoRV32 32-bit RISC-V microcontroller
• Area and Power-efficient/Low performance core drives intelligent storage

• Specialized accelerator tiles
• Ex: Convolution accelerator

• All cores and accelerators use common DECADES memory system with orchestrated
data movement
• Leverage JuxtaPiton Expertise: Open-source, general-purpose, heterogeneous-ISA

processor
• Shared memory between 64-bit OpenSPARC T1 and 32-bit PicoRV32 cores
• Boots Linux on OpenSPARC T1, offloads 32-bit RISC-V binaries to low-power PicoRV32 core

Distribution C 17

This Talk • Compiler and Chip Development
• Other Research Status Updates

DECADES PLATFORM ARCHITECTURE

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Distribution C 19

Bit-Serial SIMD

• Bit-Serial: Calculations on bit-level instead of word-level
• Similar to breaking instructions into micro-operations
• Dramatic reduction in datapath hardware
• Overhead in latency and control logic

• Bit-Serial SIMD Exploit efficient datapath
• Can fit many ALUs in a small area

• Enable very wide SIMD parallelism – exploit data-level parallelism
• Mitigate latency overhead by improving throughput
• Minimize control logic overhead
• Energy-efficient

[Jackson & Wentzlaff]

Bit-Serial SIMD->Near-Memory Compute in
DECADES

• Goal: Minimize data movement between memory and core by performing
computation close to memory
• Opportunity: Small per-element computation on large data structure
• FastText
• Glucose

• Opportunity: Searching through large structures (finding a needle in a
haystack)
• Graphqube
• MapReduce
• Graph Projection

• Opportunity: Large numbers of indirect references
• Glucose
• BFS

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

[Jackson & Wentzlaff]

Accelerator Integration in DECADES Architectures
How are accelerators integrated in
the DECADES architecture?
• Hardware Integration
• Reconfigurable interface socket

• Software Integration
• Invocation and (re)-configuration

through Linux device drivers
• Interaction with Memory

Hierarchy
• Support for coexistence of 3 main

heterogeneous coherence models
• Run-time algorithm to select the

optimal coherence model at each
accelerator invocation

Publications: [Giri et al., IEEE Micro’18] [Giri et al., NOCS’18] [Giri et al., ASPDAC’19]

Integrating Heterogeneous CPUs and Memory
Consistency Models
• Increasing heterogeneous parallelism à

challenging to integrate hardware with
heterogeneous memory models
• Key insight: hardware generally wants to

support high-level language programs,
e.g. C/C++
• MemGlue approach:
• Consistency protocol designed to enforce

C/C++ MCM requirements for a
heterogeneously parallel system with
minimal added hardware

• Enables fine-grained communication
between heterogeneous system components

Ariane
64-bit RISC-

V Core

Modified
OpenSPARC

T1 Core

Intelligent
Memory Tile

Intelligent
Memory Tile

Intelligent
Memory Tile

Accelerator
Tile

Intelligent
Memory Tile

Accelerator
Tile

Modified
OpenSPARC

T1 Core

Embedded
FPGA Tile

Intelligent
Memory Tile

Intelligent
Memory Tile

Accelerator
Tile

Ariane
64-bit RISC-

V Core

Ariane
64-bit RISC-

V Core

Modified
OpenSPARC

T1 Core

Accelerator
Tile

Ariane
64-bit RISC-

V Core

Modified
OpenSPARC

T1 Core

Accelerator
Tile

Embedded
FPGA Tile

Accelerator
Tile

Ariane
64-bit RISC-

V Core

Modified
OpenSPARC

T1 Core

Intelligent
Memory Tile

Off Chip Memory System with In-Memory
Computation implemented in FPGA

[Trippel, Manocha & Martonosi]

MemGlue Consistency/Coherence Shims
• Heterogeneous cluster (i.e. cluster): Any set of homogeneous cores or

accelerators which share a localized memory hierarchy
• MemGlue integrates clusters with minimal hardware support:
• Consistency shims (i.e. shims) per-cluster to interface between local cluster and

outside memory system
• Consistency controller (i.e. CC) to interface between shims

MemGlue Status and Performance Expectations
• Baseline MemGlue:
• Timestamps (ts) instead of invalidation messages à eliminates traffic due to

invalidations
• Minimal storage requirements à ts for each cache line in the LLC of each cluster;

sharer list in the CC
• MemGlue exploration and optimizations:
• Explore methods for sending writes to CC only at sync point à minimize update

traffic
• Explore optimal buffer size à minimize traffic due to full shim buffers

• Performance expectation: achieve heterogeneous consistency
performance approx. equal to the performance of the cluster with the
strongest MCM
• Other goals: prove MemGlue properties using formal techniques

Project Milestones
26

Task Category Phase 1 Phase 2 Phase 3
Language, Compiler &
Runtime System (TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

Application
Development (TA1,
TA2)

1.2: Transformation of Provided
Benchmarks

2.2: Optimization of Provided
Benchmarks

3.2: Full benchmark
characterization on DECADES
Hardware

Platform Architecture
(TA2, TA2)

1.3: Initial Design of DECADES
Platform Architecture

2.3: Full Design of DECADES
Platform Architecture

3.3: Optimization and Scaling of
DECADES Platform Architecture

Simulation and
Emulation (TA1, TA2)

1.4: Lightweight Simulator and
Emulator for DECADES Platform

2.4: Full-system Simulator and
Emulator for DECADES Platform

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

Hardware Design (TA1) 1.5: Test chip development 2.5: DECADES Chip design 3.5: Full Hardware System
Demonstration

Technology Transfer
(TA1, TA2)

1.6: Transfer of Phase 1 Results
and Deliverables

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.6: Transfer of Results and
Deliverables from all three phases

Technology Transfer Plans & Status
• Outputs:
• Software ecosystem
• Chip design
• FPGA emulation system

DRAM +
I/O

Chipset FPGA
Kintex 7

Bridge FPGA
Spartan 6

Test Chip +
Heat Sink

Bulk
Decoupling

Power
Supply

Misc.
Configuration

• Status:
• Moved OpenPiton to github
• Released two versions of

OpenPiton
• Support for JuxtaPiton (PicoRV32)
• Support for Ariane (64-bit

RISC-V core)
• QEMU Instrumentation Plane
• Before July 1:

• DECADES Compiler + Pythia
Simulator

• One more OpenPiton release

Conclusions
• Compiler:
• Working prototype with ongoing feature additions

• Hardware:
• Several tile designs ready. More soon.

• Simulation/Emulation:
• Lightweight simulator: Pythia
• QEMU Instrumentation plane
• FPGA Emulation

Distribution C 28

