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DECADES: A VERTICALLY-INTEGRATED APPROACH

Language and e Enhance data locality
Compiler Support e Optimize spatial mapping of threads

: e Enable in-memory computin
Lead: Martonosi able Sery puting

Very Coarse-Grained e Coarser than CGRA = VCGRTA
Reconfigurable e 3 classes of reconfigurable tiles
Tile-Based Architecture e Reconfigurable interconnection network
Lead: Carloni e Reconfigurable in-memory computing

Multi-Tiered e Scalable full-system simulation
Demonstration Strategy e Multi-FPGA emulation infrastructure
e 225-tile DECADES chip prototype

Lead: Wentzlaff
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DECADES PLATFORM ARCHITECTURE
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FPGAs: Off-Chip Memory System
with In-Memory Computation
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FPGAs: Off-Chip Memory System
with In-Memory Computation
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Project Milestones

Task Category Phasel _____ [Phase2 ____ |Phamses

Language, Compiler &
Runtime System (TA2)

Application
Development (TA1,
TA2)

Platform Architecture
(TA2, TA2)

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA1)

Technology Transfer
(TA1, TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

1.2: Transformation of Provided
Benchmarks

1.3: Initial Design of DECADES
Platform Architecture

1.4: Lightweight Simulator and
Emulator for DECADES Platform

1.5: Test chip development

1.6: Transfer of Phase 1 Results
and Deliverables

2.1: Dynamic Adaptation
in DECADES Software
Systems

2.2: Optimization of Provided
Benchmarks

2.3: Full Design of DECADES
Platform Architecture

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases

4 Distribution C



. * Compiler and Chip Development
This Talk
* Other Research Status Updates
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Status & Approach

e Common kernels

Applications

Compilers,
Analysis and
Optimizations

e Automatic and guided
optimizations

Hardware
Desigh &
Specialization

* Tile selection and
design
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Applications Mapping to DECADES

Applications

DECADES features for acceleration

convoluti vector
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arith

Acceleratortile

matrix  graph ... SOCP map
statistics

arith utilities equations /reduce

efficient data prefetching
streaming

graph data

Memorytile

refetchin
P 6 temp data for inter

accelerator comm
formulas

in-memory /
near-memory
computation

Processor tile

prefetching
graph data

3D segmentation
Pythia

Text classification
Glove

Reptile
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Local graph clustering
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Graph projections
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Example Mappings to DECADES

For given src, extract pair
of neighbors and weights

Source Partition 1

Source Partition 2

Source partition n

DECADES neural network solution
for Reptile application

512x28x 28 Image inputs

Update new edges if present
insert() new edges otherwise

I:I DECADES Intelligent Storage

- DECADES Core Tile

Vertex Partition 1
Vertex Partition 2

- (\‘0};\ T =
‘&;‘gﬁ,“ ¢ Compute Engine
o\
N ScratchPad

Vertex Partition n

4

Convolution | | o.) eax3 512x64x3 64x3
Accelerator
[ |DECADES Inteligent Storage
[ | DECADES Core Tile
[ | DECADES Accslerator Til Intelligent Storage Tiles optimized )
for the output/inputsizes of neural Reptlle

network compute operations

Off-chip Memory System

Graph Projections
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. * Compiler and Chip Development
This Talk
* Other Research Status Updates




DECADES Compiler

* Working prototype
* LLVM/CLANG

Intelligent
Storage Tile

Accelerator Tile

Compiler identifies or
produces code to be
executed on DECADES
tiles.

Kernel source code
consists of a sequence
of instructions.

Proposes an efficient
mapping to available tiles.

Distribution C 11



DECADES Compiler:
Decoupling Supply/Compute

Compute_Kernel does not
access memory, is only for
efficient computation

Intelligent
Storage Tile

Supply_Kernel does not
compute, is only for
efficient memory accesses.

Distribution C 12



Terminal Loads & Decoupled Supply-Compute

SHOC terminal loads % SDH teminal loads %
100

100 100 100

100 100

90 90

80 80

70 70 65.82
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50 46 50

4 40
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2 20

10.62
1 10 3.49
0.12
: ] —
gemm sort triad san stencil

o

o

o

o

0

graph projection graphqube wfst fasttext

* SDH apps have fewer Terminal loads (load for which supply kernel does
not need load return values) than SHOC

* => Decouple at a coarser granularity:

* Do not decouple all memory operations, allowing Supply Kernel to have more
terminal loads and execute sufficiently ahead of Compute Kernel.



DECADES Library Interfaces

* Building up DECADES library and API

* Program annotations +
* Efficient implementations/mappings of common kernels. e.g., convolution.
* Map to accelerator tile + memory wrappers

Compiler identifies common APIs
(e.g. CuDNN) and substitutes
DECADES library alternative

Convolution
Accelerator Tile

Common libraries can
be mapped to a
hardwired accelerator | == = = = = =
tile

Convolution in ALL SDH apps

is through a high-level API:
* Tenserflow

* PyTorch Contains DECADES
implementations/mappings




Project Milestones
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Language, Compiler &
Runtime System (TA2)

Application
Development (TA1,
TA2)

Platform Architecture
(TA2, TA2)

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA

Technology Transfer
(TA1, TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

1.2: Transformation of Provided
Benchmarks

1.3: Initial Design of DECADES
Platform Architecture

: LighbweigireSmaulator and
ulator for DECADES Pla

1.6" asfer of Ph
and Deliverables

2.1: Dynamic Adaptation
in DECADES Software
Systems

2.2: Optimization of Provided
Benchmarks

2.3: Full Design of DECADES
Platform Architecture

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases



Planned DECADES Test Chip: Early 2020

* 9mm2 GF 14nm
 Sample of tiles
* Heterogeneous CPUs

* Tiles connected with multi-plane
on-chip 2D Mesh network

* [ntelligent memory tiles support
optimized inter-tile data
movement

Ariane Modified
Accel Accelerator Accelerator
o S 64-bit RisC-V e OpenSPARC o
Ii€ Core T1 Core
Intelligent Intelligent Intelligent
Modified Memory Tile Memory Tile Memory Tile Ariane
OpenSPARC Managed by Managed by Managed by 64-bit RISC-V
T1 Core PicoRV32 PicoRV32 PicoRV32 Core
RISC-V Core RISC-V Core RISC-V Core
Intelligent Intelligent Intelligent »
Ariane Memory Tile Memory Tile Memory Tile Modified
64-bit RISC-V Managed by Managed by Managed by OpenSPARC
Core PicoRV32 PicoRV32 PicoRV32 T1 Core
RISC-V Core RISC-V Core RISC-V Core
Modified Ariane
Accelerator Embedded Accelerator
: OpenSPARC : 64-bit RISC-V :
Tile FPGA Tile Tile
T1 Core Core
Intelligent
Modified Memory Tile Ariane
Embedded Accelerator :
OpenSPARC EPGA Tile Managed by Tile 64-bit RISC-V
T1 Core PicoRV32 Core
RISC-V Core

Off Chip Memory System with In-Memory
Computation implemented in FPGA
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DECADES Test Chip: CPU Heterogeneity

* Heterogeneity enables matching performance/energy profile to application phase

 DECADES Mixture of three core type
* OpenSPARC T1 multithreaded core

e Multithreaded efficiency .
* Full Stack OS 1 -~ ® %
* Ariane 64-bit RISC-V core C)perl—-D + Arla ne 7y ¢ P
* Decent performance 64-bit core
* PicoRV32 32-bit RISC-V microcontroller
» Area and Power-efficient/Low performance core drives intelligent storage
* Specialized accelerator tiles
* Ex: Convolution accelerator

* All cores and accelerators use common DECADES memory system with orchestrated
data movement

* Leverage JuxtaPiton Expertise: Open-source, general-purpose, heterogeneous-ISA
processor

e Shared memory between 64-bit OpenSPARC T1 and 32-bit PicoRV32 cores
* Boots Linux on OpenSPARC T1, offloads 32-bit RISC-V binaries to low-power PicoRV32 core



. * Compiler and Chip Development
This Talk
* Other Research Status Updates




DECADES

4

ATFORM A
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with In-Memory Computation

N

chip

DECADES %

DECADES
Core
Tile

DECADES
Accelerator

DECADES
Col

DECADES
Core
Tile

DECADES DECADES

Accelerator Intelligent
Tile Storage

DECADES DECADES DECADES D ECADES
Core Accelerator Core Accelerator
Tile Tile Tile

v

‘T-i‘!_e

fDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

DECADES TA1l

ITECTURE

DECADES Core Tile

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Configurable Core Pipeline

Data Supply / Compute Threads

DECADES Accelerator Tile

>

Configurable

Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Specialized, Configurable
Data Supply / Compute

Accelerator

[ ]
]

e

DECADES Intelligent Storage

>

Configurable
Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Across-Chip Configurable
On-Chip Memory

Near-Memory
Computation

Prefetcher

Configurable Pattern-Based

I

e

>

Configurable
Interconnect
Shims

Pl



Bit-Serial SIMD

Scalar Control

Processor

Scalar
RF

Tey

Bit-Serial
ALU

—

Microcode ROM

Vector Register File

A A4

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

Bit-Serial
ALU

e Bit-Serial: Calculations on bit-level instead of word-level

e Similar to breaking instructions into micro-operations
* Dramatic reduction in datapath hardware

* Overhead in latency and control logic

 Bit-Serial SIMD Exploit efficient datapath

e Can fit many ALUs in a small area

* Enable very wide SIMD parallelism — exploit data-level parallelism

* Mitigate latency overhead by improving throughput

* Minimize control logic overhead
* Energy-efficient

Bit-Serial
ALU

[Jackson & Wentzlaff]




Bit-Serial SIMD->Near-Memory Compute in
DECADES

* Goal: Minimize data movement between memory and core by performing
computation close to memory

* Opportunity: Small per-element computation on large data structure
* FastText

* Glucose

* Opportunity: Searching through large structures (finding a ne IE

haystack) B

* Graphqube rwiruiw 2
* MapReduce SESE _4dl
* Graph Projection 1

* Opportunity: Large numbers of indirect references il ol =
e Glucose :Egggs DDDDDDD w DDDDDDD =|
* BFS g

DECAli(S TAL

[Jackson & Wentzlaff]



Accelerator Integration in DECADES Architectures

NoC

How are accelerators integrated in S processor —

the DECADES architecture? o g N Y L1 cache I

* Hardware Integration =~ ¢¢ "

] ] ° ° ® ® =

* Reconfigurable interface socket e — j"‘*‘e T Fiosh

* Software Integration S T Je— coherence  1O/RQ
* Invocation and (re)-configuration acc  mem NoC

through Linux device drivers R \ p APRAM,

* Interaction with Memory

) accelerator PLM mem. ctrl
H lerarc hy read /write port confingor’r done - ¢I I i >

* Support for coexistence of 3 main coche B __DMA  cfg IRQ LC& T -

het h del = TLB = c’rrl regs directory == I 1l 3
eterogeneous coherence models b \ Al

e Run-time algorithm to select the °°§fi;,?:st LL 'OG'ES RS mbes ‘RS
optimal coherence model at each
accelerator invocation NoC s fully coherent

mmm | LC coherent
mmE non coherent

Publications: [Giri et al., IEEE Micro’18] [Giri et al., NOCS’18] [Giri et al., ASPDAC’19]



Integrating Heterogeneous CPUs and Memory

Consistency Models

* Increasing heterogeneous parallelism -
challenging to integrate hardware with
heterogeneous memory models

* Key insight: hardware generally wants to
support high-level language programs,
e.g. C/C++

* MemGlue approach:

* Consistency protocol designed to enforce
C/C++ MCM requirements for a
heterogeneously parallel system with
minimal added hardware

* Enables fine-grained communication
between heterogeneous system components

Accelerat ALLED Accelerator MR Accelerator
Cc?r.elra SN 64-bit RISC- e OpenSPARC o
e V Core T1 Core
Modified el e intellizent Ariane
OpenSPARC I\/I:::ol;ge'rlj;cle MZT’Eolfe?itle MZniol;ge'?ile i HG
T1 Core v v v V Core
Ariane intell el intellizent Modified
Serlelft e Mre]:olr'ge':'];cle MZ:Eolfe?itle MZniol;ge'?ile CPAISAE
V Core v Y Y T1 Core
Modified Ariane
E Accel
Accelerator || o) sparc | Ikl ITTRST Ao | /\ccelerator
Tile FPGA Tile Tile
T1 Core V Core

Modified
OpenSPARC
T1 Core

Embedded

FPGA Tile

Intelligent
Memory Tile

Accelerator
Tile

Ariane
64-bit RISC-

V Core

Off Chip Memory System with In-Memory
Computation implemented in FPGA

[Trippel, Manocha & Martonosi]




MemGlue Consistency/Coherence Shims

* Heterogeneous cluster (i.e. cluster vnrvie) Lo
accelerators which share a localize S CPU CPU
« MemGlue integrates clusters with | cFU

» Consistency shims (i.e. shims) per-cli
outside memory system = TTTTTTTTTTTmoooooyoooootTomToomoommooooodooooooooTootoooes

» Consistency controller (i.e. CC) to int

MemGlue ST MemGlue

Consistency Controller (CC)



MemGlue Status and Performance Expectations

 Baseline MemGlue:

* Timestamps (ts) instead of invalidation messages = eliminates traffic due to
invalidations

* Minimal storage requirements = ts for each cache line in the LLC of each cluster;
sharer list in the CC
* MemGlue exploration and optimizations:

* Explore methods for sending writes to CC only at sync point = minimize update
traffic

* Explore optimal buffer size 2 minimize traffic due to full shim buffers

* Performance expectation: achieve heterogeneous consistency
performance approx. equal to the performance of the cluster with the
strongest MCM

* Other goals: prove MemGlue properties using formal techniques
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Language, Compiler &
Runtime System (TA2)

1.1: Initial Design of DECADES
Language, Compiler and
Runtime System

2.1: Dynamic Adaptation
in DECADES Software
Systems

Application 1.2: Transformation of Provided 2.2: Optimization of Provided
Development (TA1, Benchmarks Benchmarks

TA2)

Platform Architecture  1.3: Initial Design of DECADES 2.3: Full Design of DECADES
(TA2, TA2) Platform Architecture Platform Architecture

Simulation and
Emulation (TA1, TA2)

Hardware Design (TA1)

1.4: Lightweight Simulator and
Emulator for DECADES Platform

2.4: Full-system Simulator and
Emulator for DECADES Platform

2.5: DECADES Chip design

2.6: Transfer of Phase 1 and
Phase 2 Results and
Deliverables

1.6: Transfer of Phase 1 Results
and Deliverables

Technology Transfer
(TA1, TA2)

3.1: Full Static/Dynamic
Optimization in DECADES
Language, Compiler, Runtime
SYstem

3.2: Full benchmark
characterization on DECADES
Hardware

3.3: Optimization and Scaling of
DECADES Platform Architecture

3.4: Scalable Multi-FPGA-Based
Emulator for DECADES Platform

3.5: Full Hardware System
Demonstration

3.6: Transfer of Results and
Deliverables from all three phases



Technology Transfer Plans & Status

* Qutputs:
e Software ecosystem
* Chip design
* FPGA emulation system

e Status:

* Moved OpenPiton to github

 Released two versions of
OpenPiton
* Support for JuxtaPiton (PicoRV32)

* Support for Ariane (64-bit
RISC-V core)

* QEMU Instrumentation Plane

e Before July 1:

e DECADES Compiler + Pythia
Simulator

* One more OpenPiton release




Conclusions

* Compiler:
* Working prototype with ongoing feature additions

* Hardware:
* Several tile designs ready. More soon.

e Simulation/Emulation:
* Lightweight simulator: Pythia
* QEMU Instrumentation plane
* FPGA Emulation



