
DECADES:
Deeply-Customized
Accelerator-Oriented
Data Supply Systems
Synthesis

Margaret Martonosi
H. T. Adams ‘35 Professor of
Computer Science
Princeton University

The Data Supply Challenge

• Modern computer systems are
increasingly heterogeneous
• Accelerator-oriented

parallelism to meet aggressive
performance and power
targets
• As accelerators have sped up

compute portions, the main
challenge is data supply

Data Supply = Fundamental Bottleneck in Accelerator-
Oriented Systems
• Amdahl’s Law:

Accelerating compute
makes data supply
bottlenecks look
relatively bigger!
• Key memory/comm

bottlenecks lie in
supplying specialized
accelerators with data
• Different apps ->

different data supply
needs

John McCalpin, SC’16 Keynote
Pe

ak
 F

LO
PS

 /
[L

at
en

cy
 o

r B
W

]

Latency and Bandwidth:
• Accelerator often lacks general-purpose latency-

tolerance mechanisms (e.g., OoO execution,
Multithreading)
• Improving Accelerator compute throughput increases

memory bandwidth pressure

Our Solution
• Automatically synthesize Data Supply Systems
• Optimizing for Performance and Energy…
• In a full-stack application-specialized way…
• Addressing both latency and bandwidth

DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads
• Enable in-memory computing

Language and Compiler
Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained
Reconfigurable

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered
Demonstration Strategy

DECADES: A VERTICALLY-INTEGRATED APPROACH

• Enhance data locality
• Optimize spatial mapping of threads
• Enable in-memory computing

Language and
Compiler Support

• Coarser than CGRA → VCGRTA
• 3 classes of reconfigurable tiles
• Reconfigurable interconnection network
• Reconfigurable in-memory computing

Very Coarse-Grained
Reconfigurable

Tile-Based Architecture

• Scalable full-system simulation
• Multi-FPGA emulation infrastructure
• 225-tile DECADES chip prototype

Multi-Tiered
Demonstration Strategy

Lead: Martonosi

Lead: Carloni

Lead: Wentzlaff

DECADES PLATFORM ARCHITECTURE

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Heterogeneity meets coarse reconfigurability

DECADES Core and Accelerator tiles
• Computations mapped onto

core tiles or available
accelerator tiles
• Each tile is wrapped in

monitor/reconfiguration
shim

• Dynamic reconfiguration of
Supply-Compute decoupling,
power-performance
tradeoffs, and interconnect

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

DECADES Storage Specialization
• Specialization #1:

Map apps onto mix of
compute tiles and
intelligent storage (IS) tiles
• Specialization #2:

Select and configure
appropriate storage
features within IS
• Configurable memory

banks + address and
prefetching features

• Simple near-SRAM ALU

DECADES Intelligent Storage Tile

Configurable
Interconnect

Shim

FIFO Head/Tail
Pointer Array

Intelligent DMA
Engine

Cache Pipeline

Pattern-Based
Prefetcher

Configurable Bank Interconnect

Performance Monitoring
Registers

Multi-grain
Associative
Tag Array

ALU for near
SRAM

processing

Configurable Memory Banks

Improving Latency-Bound
Applications with
Decoupled Execution

• Roots in seminal 1982 Smith DAE paper:
Separately execute memory accesses (supply)
from instructions that compute with them
(compute)
• Then: Latency tolerance “simpler” than out-

of-order execution
• Now: Fits well with accelerator-oriented

design
• Separate memory supply from accelerator
• Orthogonal to DOALL parallelism and

bandwidth optimizations
• Automatically identify and slice at compile

time

DeSC Compiler for Decoupled Architecture

Execute
Slice

Access
Slice

ST Buffer

Computation
Device

(e.g., Accelerators,
CPUs)

Cache &
Main memory

DeSC Data Supplier
(Specialized Core)

Data Buffer
(Local memory)

Our Prior Work: DeSC

• Access Slice -> Specialized DeSC Data Supplier
• Accesses data from the memory and supplies data to Execute Slice
• Runahead for latency tolerance

• Execute Slice -> Computation device
• Retrieve data sent from the Access Slice. Performs computation and

send result back to Access Slice.
• Performance: 8X better for memory bounded. Further multiplicative speedups

with N DOALL pairings of Access and Execute.

• DeSC: DEcouple data Supply
from Compute to provide high
latency tolerance without
burdening programmers
• Decouple the target program into

two slices with DeSC Compiler Tool

[Ham/Aragon/Martonosi, MICRO-48, 2015]

Improving Bandwidth-Bound Applications
• Scratchpad vs. Cache vs.

Queue
• Configurable fetch

granularity
• Customized tile-to-tile

flow
• Application-specific

prefetching
• Simple near-SRAM ALU

DECADES Intelligent Storage Tile

Configurable
Interconnect

Shim

FIFO Head/Tail
Pointer Array

Intelligent DMA
Engine

Cache Pipeline

Pattern-Based
Prefetcher

Configurable Bank Interconnect

Performance Monitoring
Registers

Multi-grain
Associative
Tag Array

ALU for near
SRAM

processing

Configurable Memory Banks

Application Example:
Graphicionado on
DECADES

13

Our Prior Work: Graphicionado

• Application-Specific Memory Hierarchy for Bandwidth-Bound Graph Analytics
• Customized memory hierarchy to minimize off-chip memory access traffic [3x reduction]
• Dataflow pipeline based on high-level abstraction eases the programming and enables

hardware reuse for different graph applications
• Specialized HW accelerator for graph analytics successfully achieves ~3x speedup and 50x+

energy saving compared to state-of-the-art software framework on 32-core CPU

[Ham et al., MICRO-49, 2016. IEEE Micro Top Picks Honorable Mention]

P2 : Read
Edge ID

Table

No Memory AccessMain Memory Access

Scratchpad
(EdgeIDTable)

P1: Read
SRC

Property

P3: Read
Edges for
given SRC

[Optional]
P4 : Read

DST
Property

P5: Process
Edge

P7: Read
Temp
DST

Property
P8: Reduce

P9: Write
Temp
DST

Property

P6: Control
Atomic
Update

Notify the vertex id of a completed update

Main Memory
(SRC Property, DST Property, Edges)

Scratchpad
(Temp DST Property)

Scratchpad Memory Access

Processing
Phase

Hardware
Unit

Graphicionado Memory Specialization

Source-Oriented
Data Access

Source-Oriented
Data Access

Source-Oriented
Data Access

Destination-
Oriented Data

Access

Destination-
Oriented Data

Access

Destination-
Oriented Data

Access

DECADES
Accelerator Tile

DECADES
Core Tile

… … …

Read Active Vertex
List

Read Edge ID Table
Read Edge Array

Data Partition 1

…

Data Partition 2

Data Partition n

DECADES
Core Tile

processEdge(
)

Reduce()
Apply()

Read DST, Temp DST
Write DST, Temp DST

Write Active Vertex List

[sr
c.p

rop,edge list
]

[src, dst, tmp
dst]

[src.prop,edge list]

[tmp dst, dst]

[…]

DECADES Intelligent Storage

DECADES Core Tile

(unused) DECADES Accelerator Tile
Mapping Graphicionado to DECADES

Off-chip Memory System

[src, dst, tmp
dst][tmp dst, dst]

Off-chip Memory System

Source-Oriented Intelligent Storage Tiles

ActiveVertex
Array

Cache Edge ID Table

ScratchpadSequential
Prefetcher

IS Controller
IS Controller

Edge Array

Cache

Sequential
Prefetcher

IS Controller

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)

Destination-Oriented Intelligent Storage Tiles

Temp Vertex
Array

Scratchpad

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)

IS Controller

Vertex Array

Cache

Sequential
Prefetcher

IS Controller

Active Vertex
Array

Cache

Sequential
Prefetcher

IS Controller

Off-chip Memory System

Other DECADES optimizations
• Coherence domain restrictions [Fu et

al. MICRO 2015]
• Automatic consistency/coherence

protocol optimizations for
heterogeneous hardware.
• Per-tile power gating, clock gating,

and V/f scaling.
• Turn on/off NoC planes at compile-

time or runtime.
• Streamline tile-to-tile data flow
• Novel consistency and transaction

models

0 66

6

68 8

8 8

8 18 20 22 24

10 20 22 24 26

10 20 22 24 26

8 10 12 22 24 2610 28

10 12 14 24 26 28 3012

12 14 16 26 2814 30 32

16 14 16 18 28 30 32 34

18 16 18 20 30 32 34 36

0 66

68 8

8 32 34 36 38

10 34 36 38 40

8 10 12 36 38 4010 42

10 12 14 38 40 42 4412

0 66

6

68 8

8 8

8 10 12 14 16

10 12 14 16 18

12 14 16 18

8 10 12 14 16 1810 20

10 12 14 16 18 20 2212

12 14 16 18 2014 22 24

16 14 16 18 20 22 24 26

18 16 18 20 22 24 26 28

18 2020

2022 22

22 24 26 28 30

24 26 28 30 32

22 24 26 28 30 3224 34

24 26 28 30 32 34 3626

Domain 3

Domain 2

Domain 4 Domain 5

Domain 1

Coherence Domain Restriction.
[Fu et al. MICRO 2015]

DECADES Language,
Compiler & Runtime
System

20

LANGUAGE, COMPILER & RUNTIME SYSTEM

• Bandwidth
optimizations
through cache
optimizations
and locality/granularity
tailoring
• Latency tolerance

through decoupling
• Build on DeSC LLVM

compiler infrastructure

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Combined Latency and Bandwidth Approaches

Program

Executable

Address-space

mapping

Initial Set of

In-Memory Operations

Initial Task

Mapping

DECADES Tile

Configuration

Interconnect Bridges

Configuration

Data Migration

(Across DDR nodes)

Update In-Memory

Operations

Task Migration

(across Tiles)

DECADE Tile

Reconfiguration

Bridge Ports

Re-Routing

Source Code

Compile-Time Optimizations

(Graphicionado, DeSC)

Run-Time

Self-Tuning

Data Segments

Definition

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

Intelligent

Storage

DECADES

chip

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Accelerator

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

DECADES

Core

Tile

L1 Cache

Configurable

Interconnect

Shims

Configurable Core Pipeline

Data Supply / Compute Threads L1 Cache

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Core Tile

Configurable

Interconnect

Shims

Specialized, Configurable

Data Supply / Compute

Accelerator

Per-Tile Configurable

On-chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Accelerator Tile

Configurable

Interconnect

Shims

Near-Memory

Computation

Across-Chip Configurable

On-Chip Memory

DECADES Monitor and Run-Time Reconfiguration Shim

DECADES Intelligent Storage

Configurable Pattern-Based

Prefetcher

Run-Time

Self-Tuning

Run-Time

Self-Tuning

Run-Time

Self-Tuning

DECADES TA2 DECADES TA1

FPGAs: O↵-Chip Memory System

with In-Memory Computation

FPGAs: O↵-Chip Memory System

with In-Memory Computation

Decouple Supply-Compute for
Latency Tolerance

Tailor Parallelism ,Granularity,
and Storage Structures for
Bandwidth Optimization

Multiplicative Speedup

Simulation
Emulation
Chip Design

23

Evaluation Plans

24

• LLVM IR -> Dependence graph
• Resource limits -> Timing, Power, AreaDesign Tradeoffs &

Lightweight Simulation

• Build on Embedded Scalable Platforms
work [Carloni, DAC 2016]

• Direct maps to FPGAs

QEMU and FPGA
Emulation

• Phase 2: Test Chip
• Phase 3: DECADES PrototypeChip Prototyping

High-level Simulator Approach

25

CPU Accels
On-Chip

Intelligent
Storage

On-Chip Interconnect

“Interleaver” Simulator

Per-Module
Dependence
Graph analysis
from LLVM IR

Weave together
individual graphs
to form overall
performance (or
power) estimate

Emulation & Prototyping
• Take DECADES architecture to FPGA
• Continued design refinement throughout

program

• Prototype chip to de-risk
architecture

• Recent 25-core manycore
system built by our team• Multi-FPGA emulation infrastructure

Technology Transfer Plans
• Outputs:

• Software ecosystem

• Chip design

• FPGA emulation system

DRAM +

I/O

Chipset FPGA

Kintex 7

Bridge FPGA
Spartan 6

Test Chip +

Heat Sink

Bulk

Decoupling

Power

Supply

Misc.

Configuration

• Leverage extensive past experience:

• Widely-used open-source software (Wattch, *Check tools, scalable QEMU)

• Patents licensed to major companies (Power-efficient ALUs)

• Technology transferred from academia to startups (Tilera)

• Open-Source Hardware (OpenPiton)

• Technology transfer plans:

• Release of software, hardware,

and data

where possible

• Commercialization

and licensing

Summary & Impact
Language/Compiler/Runtime:

• Latency: >4X per thread performance benefits from
memory data supply decoupling

• Bandwidth: Granularity management and
Multiplicative outer-loop parallelism up to bandwidth
limit

• Total of 50X over single-thread from software

Configurable Hardware Platform:

• Hardware speedups from accelerators for address
calculation, memory fetch, or compute

• Fine-grained, low-overhead measurements drive
adaptation and module depowering

• 10-20X multiplicative power/performance benefits

Private Talk
Starts Here…

Source-Oriented
Data Access

Source-Oriented
Data Access

Source-Oriented
Data Access

Destination-
Oriented Data

Access

Destination-
Oriented Data

Access

Destination-
Oriented Data

Access

DECADES
Accelerator Tile

DECADES
Core Tile

… … …

Read Active Vertex
List

Read Edge ID Table
Read Edge Array

Data Partition 1

…

Data Partition 2

Data Partition n

DECADES
Core Tile

processEdge(
)

Reduce()
Apply()

Read DST, Temp DST
Write DST, Temp DST

Write Active Vertex List

[sr
c.p

rop,edge list
]

[src, dst, tmp
dst]

[src.prop,edge list]

[tmp dst, dst]

[…]

DECADES Intelligent Storage

DECADES Core Tile

(unused) DECADES Accelerator Tile
Mapping Graphicionado to DECADES

Off-chip Memory System

[src, dst, tmp
dst][tmp dst, dst]

Off-chip Memory System

Source-Oriented Intelligent Storage Tiles

ActiveVertex
Array

Cache Edge ID Table

ScratchpadSequential
Prefetcher

IS Controller
IS Controller

Edge Array

Cache

Sequential
Prefetcher

IS Controller

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)

Destination-Oriented Intelligent Storage Tiles

Temp Vertex
Array

Scratchpad

• Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
• Tiles programmed with bulk access directives, destination tile(s)

IS Controller

Vertex Array

Cache

Sequential
Prefetcher

IS Controller

Active Vertex
Array

Cache

Sequential
Prefetcher

IS Controller

Off-chip Memory System

Tile Configurations for Graphicionado

Intelligent Storage (Source-Oriented)

• Intelligent Storage configured with Cache, Scratchpad and Prefetcher

EdgeIDTable
Scratchpad Storage

ActiveVertex Array
Edge Array

Cache

Sequential
Prefetcher

Intelligent Storage (Destination-Oriented)

Temp Vertex Property
Vertex Property

Scratchpad Storage

DECADES Core Tile

IS
Controller

processEdge()
Reduce()
Apply()

L1 Cache

Off-chip Memory System

Core

ActiveVertex
Array
Cache

Sequential
Prefetcher

FIFO FIFOIS
Controller

FIFO

Evaluation
Systems
Details…

High-level Simulator Approach

35

CPU Accels
On-Chip

Intelligent
Storage

On-Chip Interconnect

“Interleaver” Simulator

Per-Module
Dependence
Graph analysis
from LLVM IR

Weave together
individual graphs
to form overall
performance (or
power) estimate

Per-Module Graph-Based
Performance Analysis

LLVM IR
Graph

Generator

Live, Arch-
independent

Profiler

Mem Address Trace
Control Flow Trace

Graph
Scheduler/
Simulator

Performance
estimate

Code (marked
Region of Interest)

Graph representation
of code

Per-Module Graph-Based
Performance Analysis

LLVM IR
Graph

Generator

Live, Arch-
independent

Profiler

Mem Address Trace
Control Flow Trace

Graph
Scheduler/
Simulator

Performance
estimate

Code (marked
Region of Interest)

Graph representation
of code

Model 1: ILP within a basic block only
1. Instructions within a basic block can execute in

parallel
2. But no other BB’s instruction can execute until

all instructions(e.g., store c[i]) finish

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
c[i] = a[i] + b[i];

}

Model 2: Non-speculative Execution
1. Instructions within a basic block can execute in

parallel
2. After branch outcome is obtained (i.e., br), next

basic block can immediately start execution
3. (Or if the loop is known to be fully parallel)

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
c[i] = a[i] + b[i];

}

Model 3: Speculative Access

a[i] b[i]

c[i]

for(int i=0; i<ARRAY_SIZE; i++) {
if(a[i]>50) {
b[i] = c[i] * 4 + a[i]-3;

}
else
c[i] = b[i] * 4 + a[i] *2;

}

1. Instructions within a basic block can
execute in parallel

2. Even before the branch outcome is obtained,
it speculatively processes the next
(potential) basic block as long as there’s
no data dependency

Model 4:
Memory Dependence

for(int i=2; i<ARRAY_SIZE; i++) {
c[i] = a[i-2] + 3;
a[i] = c[i*2-4];

}

O1. Do not process load (with
potential alias) until previous
store is finished

O2. Do not process load until
previous store address is ready
(do not wait until value)

O3. Speculatively process load
until even under the presence of
aliasing store

c[i*2-4]

c[i]

a[i-2]

a[i]

i

Loop-
carried
dependence

Loop-
independent

(non-consistent)
Dependence

Language,
Compiler,
Runtime

Details

Decoupling Data Supply from Computation
• Access Slice

• Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
• Computes address for STORE and updates it with STORE_ADDR.

• Execute Slice
• Retrieves data sent from Access Slice with CONSUME instruction.
• Computes value for STORE and updates it with STORE_VAL.

• Performance: 8X better from memory boundedness. Further multiplicative
speedups with N DOALL pairings of Access and Execute.

Execute Slice

for (i=0;i<N;i++)
{
v1 = CONSUME();
v2 = CONSUME();
val = v1 + v2 * k;
STORE_VAL(val)

}

Original
Code

for (i=0;i<N;i++) {
v1 = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = v1 + v2*k;
STORE(&c[i], val)

}

Access Slice

for (i=0;i<N;i++)
{
v1 = LOAD(&a[i]);
PRODUCE(v1);
v2 = LOAD(&b[i]);
PRODUCE(v2);
STORE_ADDR(&c[i]);

}

Decoupling
Data Supply
from
Computation

• DeSC Compiler slices a program into two parts: access slice and execute slice
• Inspired by seminal work: James Smith, Decoupled Access/Execute Architecture (DAE), ISCA’82

• Access Slice
• Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
• Computes address for STORE and updates it with STORE_ADDR.

• Execute Slice
• Retrieves data sent from Access Slice with CONSUME instruction.
• Computes value for STORE and updates it with STORE_VAL.

• Access Slice can run ahead of Execute Slice

Execute Slice

for (i=0;i<N;i++)
{
v1 = CONSUME();
v2 = CONSUME();
val = v1 + v2 * k;
STORE_VAL(val)

}

Original
Code

for (i=0;i<N;i++) {
v1 = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = v1 + v2*k;
STORE(&c[i], val)

}

Access Slice

for (i=0;i<N;i++)
{
v1 = LOAD(&a[i]);
PRODUCE(v1);
v2 = LOAD(&b[i]);
PRODUCE(v2);
STORE_ADDR(&c[i]);

}

ISA Additions for
Memory Decoupling

• CONSUME
Retrieves data from the Data
Buffer

• STORE_VAL
Updates Store Value in ST
Buffer

Data Supplier Special Instructions Computation Device Special Instructions

• PRODUCE
Inserts data to the Data
Buffer

• STORE_ADDR
Updates Store Address in ST
Buffer

DECADES Compiler for Decoupled Architecture

Execute
Slice

Access
Slice

ST Buffer

Computation
Device

(e.g., Accelerators,
CPUs)

Main Memory

Data Supplier
(Specialized Core)

Data Buffer
(Local memory)

DECADES Compiler for Decoupled Architecture

Execute
Slice

Access
Slice

ST Buffer

Computation
Device

(e.g., Accelerators,
CPUs)

Main Memory

Data Supplier
(Specialized Core)

Data Buffer
(Local memory)

Decoupled Execution: Key Ideas

1. DECADES compiler automatically generates code for decoupled Data Supply
and thus does not require programmer input for communication
management

2. DECADES specializes general-purpose core for data supply task for higher
performance

3. DECADES Data Supplier hardware can be used to supply data for different
types of computation devices

Why Decoupled Optimizations?
• Use of conventional OoO core as a data supplier in DAE often fails to improve performance

• Performance is often worse than for a single core

• Significantly worse than perfect latency tolerance (single core w/ perfect L1 cache)

(Conventional OoO core)

Why Decoupled Optimizations?
• What are main problems?

1. Inefficiency in OoO core: Later instructions cannot commit if long latency load is blocking the head of the ROB

2. Loss of Decoupling Events: Data Supplier depends on computation device and has to stall

(Conventional OoO core)

Opportunities in Decoupled Access Slice

• Opportunity: Most of LOADs in a Decoupled Access Slice

have a single PRODUCE instruction as its only dependent

• Conventional Architecture: Results of LOAD instructions

are used for computation

Example
Access Slice

for (i=0;i<N;i++)
{
idx = LOAD(&a[i]);
tmp = LOAD(&b[idx]);
PRODUCE(tmp);

}

Example
Access Slice

for (i=0;i<N;i++)
{
idx = LOAD(&a[i]);
LOAD_PRODUCE(&b[idx]);

}

Code before marking

Terminal Loads

Code after marking

Terminal Loads

• Terminal Load: Loads whose fetched

value is only used for the following

PRODUCE

o Compiler converts such loads to

LOAD_PRODUCE which has no

dependent

• Decoupled Architecture: Results of most LOAD instructions are only used in the

Execute Slice

• No other dependent except for the immediate PRODUCE

Load – Compute – Store

Load - Produce

Access Slice Execute Slice

Consume-Compute-Store

Non-decoupled Code

Prior Work:
ESP, Carloni

PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

• System-Level Design Methodology

Application
Specification

Application
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

Design-Space Exploration w/ High-Level Synthesis

Processor IP
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration
w/ ESP Services

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• Flexible Tile-Based Architecture
In the span of 1 month:

21: student teams
661: improved

designs
32: avg. number

of improved designs per
team

1.5: avg. number
of new designs
per team/day

99: Pareto curve changes
11: final number of

Pareto-optimal
designs

26x: Performance range
10x: Area range

• SoC Design Productivity

[Carloni, DAC 2016]

Coherence Models for Loosely-Coupled Accelerators
• Most accelerators embrace the shared-memory paradigm…
• …but implement different levels of cache coherence. We classified them as:
1. Non-Coherent DMA

• Data must be flushed to memory
• Large data sets are accessed faster and without polluting caches

2. Fully-Coherent Load/Store
• A private cache is required to handle coherence transparently
• Preferred for frequent interleaving of processor and accelerator execution

3. Last Level Cache (LLC)-Coherent DMA (new)
• Data are flushed to LLC, thus reducing accesses to external memory
• Medium-sized data sets are accessed faster

4. Coherent DMA (new on NoC)
• No flush required thanks to recalls handled by the LLC on an NoC, or snooping on a bus
• Almost as fast as LLC-coherent DMA
• Better than LLC-coherent DMA for frequent interleaving of processor and accelerator

execution

Reconfigurable Coherence for Accelerators in ESP

• First NoC-based system enabling
the four models of coherence for
accelerators to coexist and operate
simultaneously through run-time
selection in the same SoC
• Design based on ESP Platform Services

• Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC
• The design leverages the tile-based

architecture of ESP over a packet-
switched NoC to guarantee scalability
and modularity

aux acc

SoC

NoC routers

accelerator

opt. priv.
cache

coherence
planes

1 2 3

TLB
DMA
ctrl

4 5 6

cfg
regs IRQ

DMA
planes

IO/IRQ
plane

doneread/write port con g port

bank

bankbank

bank
PLM

LLC &
directory

1 2 3 6

rd/wr

L2 cache

coherence
planes

1 2 3 6
IO/IRQ
plane

L1 instr. L1 data

processor

rd/wr

in
te

rr
up

t l
ev

el

 ush

inval.

mem. ctrl
(DDR)

DRAM

 u
sh

 p

mem

coherence
planes

IO/IRQ
plane

DMA
planes

NoC

NoC

IO

4 5

Heterogeneous Coherence Implementation
• The CAD Infrastructure of ESP:
• direct instantiation of

heterogeneous configurable
components from predesigned
libraries
• Fully automated flow from the GUI

to bitstream for FPGAs
• Support for atomic test-and-set

and compare-and-swap
operations over the NoC enable:
• multi-processor and multi-

accelerator applications on top of
Linux SMP

Heterogeneous Coherence: Experimental Setup

“The ability to have perfectly
balanced accelerator stages is
highly dependent on the specific
memory access patterns, as well as
on the system interconnect and the
memory hierarchy, including the
selected cache-coherence model”

• FFT1D
– streaming memory access

• Sort
– no temporal locality, but in-place

(i.e. in the PLM) data processing
• FFT2D

– Streaming read accesses and
single-word write accesses.

• SPMV
– asymmetric data reuse with

irregular access pattern
– low compute-to-memory ratio

Non-Coherent vs. LLC-Coherent (single accelerator)

• Compared to non-coherent accelerators, the relative speedup of LLC-
coherent accelerators ranges between 0.5x and 4x
• the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

• Confirmation of the benefits of runtime model selection based on footprint

Non-Coherent vs. LLC-Coherent (multiple
accelerators)

• The average performance degraded by up to 38% and 10% for LLC-coherent
and non-coherent accelerators, respectively
• Confirmation that the choice of the cache-coherence model should be based

on the ratio between the size of the aggregate memory footprint of all running
accelerators and the capacity of the LLC

Cache-Coherence Models for Tiny Workloads
• The fully-coherent

model can have similar
or better performance
than the other two
models, but only for the
smallest datasets
• like the LLC-coherent

model it also reduces or
removes memory
accesses
• additionally, it does not

require the flushing of
the processors’ caches,
which could disrupt the
work of other
components of the SOC

Fast-
Configurable

LUT-based
Tiles

DECADES Fast Reconfigurable LUT Tile

60

• CPU
• Kernel scheduling
• Codes that can’t benefit from static

acceleration

• Memory
• Shared between CPU &

reconfigurable array (RA)

• Reconfigurable Array
• Partitionable
• Runtime-configurable multi-context
• BRAM & arithmetic block

Array of FR-LUT Tiles

61

• NOC
• Communication between tiles

(CPUs)
• Memory system messages

• Configurable memory system
• Integrates into DECADES tile

array

FR-LUT
Tile

FR-LUT
Tile

FR-LUT
Tile

FR-LUT
Tile

DECADES Chip Progress
• Begun legal enablement of silicon technology acquisition (MOSIS, GF,

Invecas)
• Brought Semiconductor Physical Design Kit (PDK) of Global Foundries GF

14LPP (14nm) in house at Princeton
• Currently setting up design kit

• Working to acquire Hardware IP primitives needed
• Very early development of chip tool flow

Timeline and
other issues…

Phase 1 Technical Milestones and Plans

SW/Compiler
7/18: Initial

DeSC
integration in

LLVM

10/18: DeSC +
DOALL

6/19: Mem
Granularity

Optimizations

Architecture
Design

8/18: Map
Matrix Multiply

&
Graphicionado

12/18: in-
memory and
near-memory

compute

3/19: IS Tile
Organization

6/19: Design
Parameter
Selections

Simulation/
Emulation

9/18: High-level
sim operational

12/18: LLVM +
HLSim

integration.
3/19: QEMU 6/19: FPGA

Emulation

Chip Design 12/18: IS Tile
test design

2/19: CPU test
design

4/19: NoC test
design

6/19: Test Chip
design

Questions
• Demonstrate with DW (SPARC) core, but ideas apply to other ISA/Cores

too
• Use existing compute accelerator designs wherever possible
• Eg Luca Carloni Columbia CS class

• Design or synthesize data supply accelerators, using either CPU or IS tile
• Considering use of GPU tiles for some apps
• Largely orthogonal to our primary ideas about custom data supply and

interconnect

• OP + Accels speak AXI + ethernet, UARTS, etc
• FPGA Hardware at Columbia vs. FPGA resources in cloud

Backup slides

P1: Read
Active

SRC Property

Sequential
Vertex Read

P2 : Read
Edge ID Table

Edge ID
Read

P3: Read
Edges for
given SRC

[Optional]
P4 : Read DST

Property

Edge Read

P5: Process
Edge

Custom
Computation

P7: Read
Temp

DST Property
P8: Reduce

Random
Vertex Read

P9: Write
Temp

DST Property

Custom
Computation

P6: Control
Atomic
Update

Random
Vertex Read

Random
Vertex Write

Processing
Phase

Apply
Phase

A1: Read
Vertex

Property

A2: Read
Temp Vertex

Property

A5: Write
Active Vertex

Property

A4: Write
Vertex

Property
A3: Apply

Atomic
Update

Sequential
Vertex Read

Sequential
Vertex Read

Custom
Computation

Sequential
Vertex Write

Sequential
Vertex Write

Notify the vertex id of a completed update

Temporary Destination
Vertex Property Update

Hardware
Unit

If a vertex is updated

P1: Read
SRC Property

Sequential
Vertex Read

P3: Read
Edges for
given SRC

[Optional]
P4 : Read DST

Property

Edge Read

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

Random
Vertex Read

Processing
Phase

Apply
Phase

A1: Read
Vertex

Property

A2: Read
Temp Vertex

Property

A4: Write
Vertex

Property
A3: Apply

Sequential
Vertex Read

SPM
Vertex Read

Custom
Computation

Sequential
Vertex Write

Notify the vertex id of a completed update

Hardware
Unit

No Memory AccessSequential Memory Access
Random Memory Access Random/Sequential Memory Access

Scratchpad Memory Access

No Memory AccessSequential Memory Access
Random Memory Access Random/Sequential Memory Access

Hardware
Unit

Hardware
Unit

P5*: Process
Edge

Custom
Computation

P7*: Read
Temp

SRC Property
P8*: Reduce

SPM
Vertex Read

P9*: Write
Temp

SRC Property

Custom
Computation

P6*: Control
Atomic
Update

SPM
Vertex Write

Atomic
Update

Graphicionado

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

[Optional]
P4 : Read

DST Property
P1: Read

SRC Property
P2 : Read
Edge ID
Table

P3: Read
Edges for
given SRC

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

[Optional]
P4 : Read

DST Property

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

[Optional]
P4 : Read

DST Property

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

[Optional]
P4 : Read

DST Property

P1: Read
SRC Property

P2 : Read
Edge ID
Table

P3: Read
Edges for
given SRC

P1: Read
SRC Property

P2 : Read
Edge ID
Table

P3: Read
Edges for
given SRC

P1: Read
SRC Property

P2 : Read
Edge ID
Table

P3: Read
Edges for
given SRC

N x N
Crossbar

Switch

Source -
Oriented

Destination-
Oriented

Stream 1

Stream 2

Stream 3

Stream 4

P5: Process
Edge

P7: Read
Temp

DST Property
P8: Reduce

P9: Write
Temp

DST Property

P6: Control
Atomic
Update

[Optional]
P4 : Read

DST Property
P1: Read

SRC Property
P2 : Read
Edge ID

Table

P3: Read
Edges for
given SRC

No Memory AccessSequential Memory Access
Random Memory Access Random/Sequential Memory Access

Graphicionado

P2 : Read
Edge ID

Table

No Memory AccessMain Memory Access

Scratchpad
(EdgeIDTable)

P1: Read
SRC

Property

P3: Read
Edges for
given SRC

[Optional]
P4 : Read

DST
Property

P5: Process
Edge

P7: Read
Temp
DST

Property
P8: Reduce

P9: Write
Temp
DST

Property

P6: Control
Atomic
Update

Notify the vertex id of a completed update

Main Memory
(SRC Property, DST Property, Edges)

Scratchpad
(Temp DST Property)

Scratchpad Memory Access

Processing
Phase

Hardware
Unit

Graphicionado

PRIOR WORK: Coherence Domain Restriction Flexible Memory

• Flexible memory system on top of cache coherent system
• Enables the exact minimal communication needed
• Build incoherent coherent domains

• Restriction on application- or page-level
• Improves performance

• Shorter network on-chip distances
• Less interfering memory coherence traffic

• Reduces energy
• Fewer on-chip network links need to be transited
• Less area dedicated to tracking cache line sharers

• Reduces area
• Track fewer sharers on large configurations

0 66

6

68 8

8 8

8 18 20 22 24

10 20 22 24 26

10 20 22 24 26

8 10 12 22 24 2610 28

10 12 14 24 26 28 3012

12 14 16 26 2814 30 32

16 14 16 18 28 30 32 34

18 16 18 20 30 32 34 36

0 66

68 8

8 32 34 36 38

10 34 36 38 40

8 10 12 36 38 4010 42

10 12 14 38 40 42 4412

0 66

6

68 8

8 8

8 10 12 14 16

10 12 14 16 18

10 12 14 16 18

8 10 12 14 16 1810 20

10 12 14 16 18 20 2212

12 14 16 18 2014 22 24

16 14 16 18 20 22 24 26

18 16 18 20 22 24 26 28

18 2020

2022 22

22 24 26 28 30

24 26 28 30 32

22 24 26 28 30 3224 34

24 26 28 30 32 34 3626

Domain 1

Domain 3

Domain 2

Domain 4 Domain 5

[Fu et al, MICRO 2015]

PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

• System-Level Design Methodology

Application
Specification

Application
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

Design-Space Exploration w/ High-Level Synthesis

Processor IP
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration
w/ ESP Services

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• Flexible Tile-Based Architecture
In the span of 1 month:

21: student teams
661: improved

designs
32: avg. number

of improved designs per
team

1.5: avg. number
of new designs
per team/day

99: Pareto curve changes
11: final number of

Pareto-optimal
designs

26x: Performance range
10x: Area range

• SoC Design Productivity

[Carloni, DAC 2016]

TOWARDS A COMPUTER Design Renaissance

• The end of silicon dimensional scaling and
the rise of heterogeneous reconfigurable computing bring
an opportunity for a Computer Design Renaissance

• …by supporting the
creativity of
application developers to
realize innovative
architectures,
chips,
systems
and products

• … through richly
reconfigurable substrates
and intelligent
compilation and mapping

