DECADES:
Deeply-Customized
Accelerator-Oriented
Data Supply Systems
Synthesis

Margaret Martonosi

H. T. Adams ‘35 Professor of
Computer Science
Princeton University

PRINCETON
UNIVERSITY

Gl

COLUMBIA
UNIVERSITY

The Data Supply Challenge

 Modern computer systems are
increasingly heterogeneous

* Accelerator-oriented
parallelism to meet aggressive
performance and power
targets

* As accelerators have sped up
compute portions, the main
challenge is data supply

LILY Y w ers
Fomn Qg wivwmtem e et 1™ 2

Audio | DsP | video | DsP E imaging |(GPU|DMA| ;g | SD

- - a‘.u —i B -3 e - l 5

_ System Bus

Secondary Bus |

) To NV L3 7 B)
o - a = .
it [Liseataaae s o)
_—— o] @ [r—
............. ' Domvnm o Cortsd oo |
Pt i 1 P T o PO)
18 o] s : Compute accelerator block
DMA Engine + Memory Conirofler
System Bus

ra
Side Channel Links

Bowrnn Ny G b

Data Supply = Fundamental Bottleneck in Accelerator-

Oriented Systems

e Amdahl’s Law:
Accelerating compute
makes data supply
bottlenecks look
relatively bigger!

* Key memory/comm
bottlenecks lie in
supplying specialized
accelerators with data

* Different apps ->

different data supply
needs

Peak FLOPS / [Latency or BW]

10,000

1,000

100

=¢=Peak FLOPS per Idle Memory Latency

O Peak FLOPS / Word of Sustained Memory BW

x86-64 systems (AMD & Intel) |

i | RISC systems (IBM, MIPS, Alpha) |

- — —

1995

2000 2005 2010 2015 2020

to
M

Latency and Bandwidth:
* Accelerator often lacks general-purpose latency-

lerance mechanisms (e.g., Oo0 execution,
ultithreading)

. Improvin% Accelerator compute throughput increases
memory

andwidth pressure

e Automatically synthesize Data Supply Systems
. e Optimizing for Performance and Energy...
Our Solution

* In a full-stack application-specialized way...

e Addressing both latency and bandwidth

DECADES: A VERTICALLY-INTEGRATED APPROACH

Language and Compiler
Support

Very Coarse-Grained

Reconfigurable
Tile-Based Architecture

Multi-Tiered
Demonstration Strategy

e Enhance data locality
e Optimize spatial mapping of threads
e Enable in-memory computing

e Coarser than CGRA - VCGRTA

e 3 classes of reconfigurable tiles

e Reconfigurable interconnection network
e Reconfigurable in-memory computing

e Scalable full-system simulation
e Multi-FPGA emulation infrastructure
e 225-tile DECADES chip prototype

DECADES: A VERTICALLY-INTEGRATED APPROACH

Language and e Enhance data locality
Compiler Support e Optimize spatial mapping of threads

: e Enable in-memory computin
Lead: Martonosi able Sery puting

Very Coarse-Grained e Coarser than CGRA = VCGRTA
Reconfigurable e 3 classes of reconfigurable tiles
Tile-Based Architecture e Reconfigurable interconnection network
Lead: Carloni e Reconfigurable in-memory computing

Multi-Tiered e Scalable full-system simulation
Demonstration Strategy e Multi-FPGA emulation infrastructure
e 225-tile DECADES chip prototype

Lead: Wentzlaff

DECADES PLATFORM ARCHITECTURE

EDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

t

DECADES %,

1 chip

DECADES Core Tile

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

Configurable Core Pipeline
Data Supply / Compute Threads

e

DECADES Accelerator Tile

>

Configurable
Interconnect
Shims

4

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable
On-chip Memory

*—»

DECADES == DECADES == DECADES == DECADES

Accelerator Core Accelerator Core
Tile Tile Tile Tile

DECADES DECADES DECADES DECADES
Core Intelligent Intelligent celerator
Tile Storage Storage e

DECADES DECADES DECADES

Accelerator Intelligent
Tile Storage

DECADES DECADES DECADES ""'-PECADES
Core Accelerator Core Akccelerator
Tile Tile Tile

v

‘T-i,!ie

E=—= Specialized, Configurable [[|
— Data Supply / Compute
— Accelerator |:| |:|
]
>

DECADES Intelligent Storage

Configurable
Interconnect
Shims

Pl

DECADES Monitor and Run-Time Reconfiguration Shim

EDDDDDDDDj iDDDDDDDDj

FPGAs: Off-Chip Memory System
with In-Memory Computation

DECADES TA1l

Heterogeneity meets coarse reconfigurability

Across-Chip Configurable
On-Chip Memory

Near-Memory
Computation

Prefetcher

Configurable Pattern-Based

;|¢

ﬂ@

>

Configurable
Interconnect
Shims

Pl

DECADES Core and Accelerator tiles

 Computations mapped onto
core tiles or available
accelerator tiles
* Each tile is wrapped in
monitor/reconfiguration
shim
* Dynamic reconfiguration of
Supply-Compute decoupling,
power-performance
tradeoffs, and interconnect

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable

On-chip Memory

Configurable Core Pipeline

L1 Cache

Data Supply / Compute Threads

L1 Cache

>

DECADES Accelerator Tile

Configurable
Interconnect

Shims

0K

1 ¢

DECADES Monitor and Run-Time Reconfiguration Shim

Per-Tile Configurable

On-chip Memory

——— Specialized, Configurable

— Data Supply / Compute

— Accelerator

Configurable
Interconnect

Shims

b

r 1

DECADES Storage Specialization

A
* Specialization #1:
Map apps onto mix of
compute tiles and
inte”igent Storage (IS) tiles Configurable Bank Interconnect
¢ SpeCIahzathn #2: . Multi-grain
: FIFO Head/Tail Cache Pipeline ~ Associative
Select and configure Sefiriia Ay P Sy—
appropriate storage
features within IS Ao
Prefetcher ,
* Configurable memory R |
banks + address and
prefetching features reesters ﬁ]‘;g‘:'cgour::i"c‘i
e Simple near-SRAM ALU < > Shim

DECADES Intelligent Storage Tile I

Improving Latency-Bound
Applications with
Decoupled Execution

* Roots in seminal 1982 Smith DAE paper:
Separately execute memory accesses (supply)
from instructions that compute with them

(compute)

* Then: Latency tolerance “simpler” than out-
of-order execution

* Now: Fits well with accelerator-oriented
design
* Separate memory supply from accelerator

* Orthogonal to DOALL parallelism and
bandwidth optimizations

* Automatically identify and slice at compile
time

Memory

WAQ

Access
Processor

i
register
file

E-instructions

A-instructions Jl

EABQ

Execute
Processor

X
register
file

Fig. 1. Conceptual DAE Architecture

Our Prlor Work: DeSC I

) DeSC. DECOUple data Supply ACCGSS‘.EXGCUte
S _. o Slice v v Slice
from gompUte tO prOVIde hlgh [DeSC Data Supplier Data Buffer R \
latency tolerance without (Specialized Core)] (Local memory)

Computation

‘ v1 Device

burdening programmers

* Decouple the target program into
two slices with DeSC Compiler Tool

ST Buffer j«
b (e.g., Accelerators,

CPUs)
Cache &
Main memory K j

* Access Slice -> Specialized DeSC Data Supplier
* Accesses data from the memory and supplies data to Execute Slice
* Runahead for latency tolerance

» Execute Slice -> Computation device

e Retrieve data sent from the Access Slice. Performs computation and
send result back to Access Slice.

* Performance: 8X better for memory bounded. Further multiplicative speedups
with N DOALL pairings of Access and Execute.

[Ham/Aragon/Martonosi, MICRO-48, 2015]

Improving Bandwidth-Bound Applications

A
e Scratchpad vs. Cache vs.
Queue
e Configurable fetch
gra nu Ia rlty Configurable Bank Interconnect
. . . . Multi-grain
e Customized tile-to-tile FIFO Head/Tail Cache Pipeline Associative
Pointer Array Tag Array
flow
. . . o ALU f
 Application-specific SRAM
. refetcher :
prefetching Proces e |
* Simple near-SRAM ALU Configurable
Interconnect
<€ > Shim

DECADES Intelligent Storage Tile I

Application Example:
Graphicionado on
DECADES

Our Prior Work: Graphicionado

S1: Read Active S2: Read Edge S3: Read Edges S4: Process | S5: Control S6:Read Temp. || 37: Reduce [88 Write Temp.
SRC Property ID Table for given SRC Edge | AtomicUpdate | | DST Property . l DST Property
S1: Read Active S2: Read Edge S3: Read Edges S4: Process ,| S5: Control JS6:Read Temp. || 57. Raquce S8: Write Temp.
SRC Property ID Table for given SRC Edge Atomic Update DST Property DST Property
S1: Read Active S2: Read Edge S3: Read Edges S4: Process | S5: Control S6:Read Temp. |1 g7. Reduce S8: Write Temp.
SRC Property ID Table " for given SRC Edge | AtomicUpdate | | DSTProperty | ' DST Property
r
S1: Read Active S2: Read Edge S3: Read Edges S4: Process S5: Control S6:Read Temp. |1 7. Reduce S8: Write Temp.
SRC Property ID Table for given SRC Edge | AtomicUpdate | | DSTProperty | | DST Property
_J

* Application-Specific Memory Hierarchy for Bandwidth-Bound Graph Analytics
e Customized memory hierarchy to minimize off-chip memory access traffic [3x reduction]

» Dataflow pipeline based on high-level abstraction eases the programming and enables
hardware reuse for different graph applications

e Specialized HW accelerator for graph analytics successfully achieves ~3x speedup and 50x+
energy saving compared to state-of-the-art software framework on 32-core CPU

[Ham et al., MICRO-49, 2016. IEEE Micro Top Picks Honorable Mention]

Graphicionado Memory Specialization

I:l Main Memory Access - No Memory Access
- Scratchpad Memory Access

Main Memory
(SRC Property, DST Property, Edges)

Notify the vertex id of a completed update

Processing P1: Read P2 : Read P3: Read |O rona P6: Control RIS
Phase f P4 : Read P5: Process . ‘ Temp
Harduware SRC EdgbeI ID Edges |:{or DST Edge At?jmlc P8: Reduce DST
Onis Property Table given SRC Pranerty Update Propert

Scratchpad Scratchpad
‘EdgelDTable, (Temp DST Property)

Mapping Graphicionado to DECADES

Read Active Vertex
List
Read Edge ID Table

Read DST, Temp DST
Write DST, Temp DST

DECADES Intelligent Storage
DECADES Core Tile

(unused) DECADES Accelerator Tile

processEdge(
)

Write Active Vertex List Reduce()
Read ﬁge Array @ Ao@Iv()
Destination- [src, dst, tmp
. Source-Oriented . dst] g DECADES
Data Partition 1 Satalh Oriented Data) C Ti
ata Access Access [tmp dst, dst] ore Tile
) Destination-
Data Partition 2 Source-Oriented Oriented Data DECADES |
Data Access Accelerator Tile
Access
) Destination-
Data Partition n Source-Oriented Oriented Data DECAD.ES
Data Access Core Tile
Access

Off-chip Memory System

Source-Oriented Intelligent Storage Tiles

* Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
* Tiles programmed with bulk access directives, destination tile(s)

IS Controller p N IS Controller
: ’ IS Controller : ’
ActiveVertex) I . Edge Array
. Array J . J
Cerdhne \ Edge ID Table) Cordhne
{ Sequential] Scratchpad { Sequential]
Prefetcher Prefetcher

Off-chip Memory System

Destination-Oriented Intelligent Storage Tiles

* Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
* Tiles programmed with bulk access directives, destination tile(s)

p N IS Controller IS Controller
IS Controller S g S g
[)) Active Vertex
I _ Vertex Array
Temp Vertex \) \ Array J
. Array) Cache Cache
Scratchpad _{ Sequential] { Sequential]
Prefetcher Prefetcher

Off-chip Memory System

Other DECADES optimizations

* Coherence domain restrictions [Fu et
al. MICRO 2015]

» Automatic consistency/coherence
protocol optimizations for
heterogeneous hardware.

* Per-tile power gating, clock gating,
and V/f scaling.

* Turn on/off NoC planes at compile-
time or runtime.

e Streamline tile-to-tile data flow

* Novel consistency and transaction
models

8= 6=8 =10=12 =14 =16 = 18 =20 =22 =24 = 26

11
6 = 10212 =214 =16 =18 =20 =22 i 24
1 |
212 L1416 L] 18

> e e
10 s 1o L1214 16 L 18]2

I Mmoo
18= 20= 2A _—-

SN
W, e lies Il
= 20522 524 5 26 = 2830 =532

e
24 =26 =

26 =24=26 =28 =30=32= 34=36=30= 40= 42=44

Coherence Domain Restriction.
[Fu et al. MICRO 2015]

DECADES Language,
Compiler & Runtime
System

LANGUAGE, COMPILER & RUNTIME SYSTEM

Source Code

Compile-Time Optimizations

/ (Graphicionado, DeSC) \
o)

. Program Address-space Initial Task DECADES Tile
) B an d WI d t h Executable mapping Map:ping Config:uration
O pti m i Zat i ons Dagef?:ﬁzgints In—l\/ll:‘iltifyl/é)e;e(r):tions | |
through cache ’
optimizations : : : :
and locality/granularity Run-Time Run-Time Run-Time Run-Time
ta i IO ri ng Self—Tuning Self—Tuning SeIf—Tuning Self—Tluning

Data Migration Task Migration | [DECADE Tile _
° Late N Cy to I erance (Across DDR nodes) (across Tiles) Reconfiguration
Update In-Memory

through decoupling Operations

* Build on DeSC LLVM
compiler infrastructure

Combined Latency and Bandwidth Approaches
m 0000000

FPGA Off-Chip Memo

DECADES
chip

L)

& ator

$ === q": :-0 ol
| ator

|‘ 3.

|1 . | [.

|---\ | | .

DECAY HE\ e Tailor Parallelism ,Granularity,
'.‘i;-!m.

DTS ;:-.- and Stc?rage Str.ucfure.s for
Bandwidth Optimization

Decouple Supply-Compute for
Latency Tolerance

Tile
R 8 B |

.

Multiplicative Speedup

|
FPGAs: Off-Chip Memory System
with In-Memory Computation

Simulation
Emulation
Chip Design

Evaluation Plans

Design Tradeoffs &
Lightweight Simulation

QEMU and FPGA
Emulation

Chip Prototyping

e LLVM IR -> Dependence graph
e Resource limits -> Timing, Power, Area

e Build on Embedded Scalable Platforms
work [Carloni, DAC 2016]

e Direct maps to FPGAs

e Phase 2: Test Chip
e Phase 3: DECADES Prototype

24

High-level Simulator Approach

Per-Module
On-Chip Dependence.
Intelligent Graph analysis
Storage from LLVM IR

On-Chip Interconnect

“Interleaver” Simulator

Weave together
individual graphs
to form overall
performance (or
power) estimate

25

Emulation & Prototyping

* Prototype chip to de-risk
architecture

 Take DECADES architecture to FPGA

e Continued design refinement throughout
program

Chip Bridge

Tile iO ile
Tile 15
Tile 20

* Recent 25-core manycore
system built by our team

e Multi-FPGA emulation infrastructure

Technology Transfer Plans

* Outputs:
» Software ecosystem
e Chip design
* FPGA emulation system
* Technology transfer plans:

 Release of software, hardware, ‘Sl =——"
and data :
where possible

e Commercialization
and licensing

* Leverage extensive past experience:
* Widely-used open-source software (Wattch, *Check tools, scalable QEMU)
* Patents licensed to major companies (Power-efficient ALUs)
* Technology transferred from academia to startups (Tilera)
* Open-Source Hardware (OpenPiton)

Summary & Impact

Language/Compiler/Runtime:

e Latency: >4X per thread performance benefits from
memory data supply decoupling

* Bandwidth: Granularity management and
:\/Iultiplicative outer-loop parallelism up to bandwidth
Imit

* Total of 50X over single-thread from software

Configurable Hardware Platform:

* Hardware speedups from accelerators for address
calculation, memory fetch, or compute

* Fine-grained, low-overhead measurements drive
adaptation and module depowering

* 10-20X multiplicative power/performance benefits

Private Talk
Starts Here...

Mapping Graphicionado to DECADES

Read Active Vertex
List
Read Edge ID Table

Read DST, Temp DST
Write DST, Temp DST

DECADES Intelligent Storage
DECADES Core Tile

(unused) DECADES Accelerator Tile

processEdge(
)

Write Active Vertex List Reduce()
Read ﬁge Array @ Ao@Iv()
Destination- [src, dst, tmp
. Source-Oriented . dst] g DECADES
Data Partition 1 Satalh Oriented Data) C Ti
ata Access Access [tmp dst, dst] ore Tile
) Destination-
Data Partition 2 Source-Oriented Oriented Data DECADES |
Data Access Accelerator Tile
Access
) Destination-
Data Partition n Source-Oriented Oriented Data DECAD.ES
Data Access Core Tile
Access

Off-chip Memory System

Source-Oriented Intelligent Storage Tiles

* Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
* Tiles programmed with bulk access directives, destination tile(s)

IS Controller p N IS Controller
: ’ IS Controller : ’
ActiveVertex) I . Edge Array
. Array J . J
Cerdhne \ Edge ID Table) Cordhne
{ Sequential] Scratchpad { Sequential]
Prefetcher Prefetcher

Off-chip Memory System

Destination-Oriented Intelligent Storage Tiles

* Intelligent Storage configured with Cache, Scratchpad, and Prefetcher
* Tiles programmed with bulk access directives, destination tile(s)

p N IS Controller IS Controller
IS Controller S g S g
[)) Active Vertex
I _ Vertex Array
Temp Vertex \) \ Array J
. Array) Cache Cache
Scratchpad _{ Sequential] { Sequential]
Prefetcher Prefetcher

Off-chip Memory System

Tile Configurations for Graphicionado

* Intelligent Storage configured with Cache, Scratchpad and Prefetcher
DECADES Core Tile

processEdge())
Reduce() L1 Cache
Apply()
Core
FIFO
Intelligent Storage (Source-Oriented) Intelligent Storage (Destination-Oriented)

— |

1S |
[EdgelDTable]Q[Controller]" FIFO

FIFO J [Temp Vertex Property

Sequential
Scratchpad Storage i Vertex Property] 9
- , 2 Scratchpad Storage Prefetcher
Sequential ActiveVertex Array _ Y
Prefetcher Edge Array | IS ActiveVertex
Controller Array
Cache
Cache

Off-chip Memory System

Evaluation
Systems
Details...

High-level Simulator Approach

Per-Module
On-Chip Dependence.
Intelligent Graph analysis
Storage from LLVM IR

On-Chip Interconnect

“Interleaver” Simulator

Weave together
individual graphs
to form overall
performance (or
power) estimate

35

Per-Module Graph-Based
Performance Analysis

Code (marked
Region of Interest)

Mem Address Trace
Control Flow Trace

Graph representation
—) OPTTED —
of code

Performance
estimate

Per-Module Graph-Based
Performance Analysis

Code (marked
Region of Interest)

Mem Address Trace
Control Flow Trace

Graph representation
—) OPTTED —
of code

Performance
estimate

Model 1: ILP within a basic block only

1. Instructions within a basic block can execute in

parallel
2. But no other BB’s instruction can execute until

all instructions(e.g., store c[i]) finish

cntry brlabel %for.body

for.bod y

for(int i=0; i<ARRAY_SIZE; i++) {
c[i] = a[i] + b[i];

Sindvarsiv = phi 164 [0, %entry |, [%indvars.iv.next, %for.body |

}

Gearrayidx = getelementptrinboundsi32,132* %a, 164 %indvarsiv Gearrayidx2 = getelementptrinbounds 132,132 %b, 164 %indvars.iv Sindvars.iv.next = add nuw nsw 164 %indvars.iv, |

\ [i] b[i] ,/ ,/
@l 32,132* %arrayidx, align 4, 'tbaa !2 S%tmpl =load 132,132* %armrayidx2, align 4, !tbaa !2 Geexitcond = icmp eq 164 %indvarsiv.next, 100

Gearrayidx4 = getelementptrinbounds 132,132 %c, 164 %indvarsiv %add = add nsw 132 %tmp1, %tmp

bril %exitcond, label %for.cond.cleanup, label %for.body, llvm.loop !6

%add,i32* %arrayidx4, align 4, 'tbaa 12

Model 2: Non-speculative Execution

1. Instructions within a basic block can execute in
parallel

2. After branch outcome is obtained (i.e., br), next
basic block can immediately start execution entry
3. (Or if the loop is known to be fully parallel)

brlabel %for.body

for(int i=@; i<ARRAY_SIZE; i++) { oo
c[i] = a[i] + b[i];
}

Seindvarsiv = phi 164 [0, %entry |, [%indvars.iv.next, %for.body |

Garrayidx = getelementptrinboundsi32,132* %a, 164 %indvarsiv Gearrayidx2 = getelementptrinbounds 132,132% %b, 164 %indvars.iv

Gindvars.iv.next = add nuw nsw i64 %indvarsiv, 1

\ ")

Getmp = load 132,132 %arrayidx, align 4, 'tbaa !2 Gtmpl =load 132,i32* %arrayidx2, align 4, 'tbaa !2

Gearrayidx4 = getelementptrinbounds i32,132* %c, 164 %indvars.iv

Seexitcond = icmp eq 164 %indvarsiv.next, 100

%% add = add nsw 132 %tmpl, %tmp bril %exitcond, label %for.cond.cleanup, label %for.body, llvm.loop !6

idd, 132% %arrayidx4, align 4, 'tbaa 12

Model 3: Speculative Access

1. Instructions within a basic block can
execute in parallel
2. Even before the branch outcome is obtained,

for(int i=0; i<ARRAY_SIZE; i++) { it speculatively processes the next
if(a[i]550) { (potential) basic block as long as there’s
b[i] = c[i] * 4 + a[i]-3; no data dependency
}

else

c[i] = b[i] * 4 + a[i] *2; i

%add14 = add nsw 132 %mul 10, %mul 13 bril %cmpl,label %if.then, label %if.clse

Model 4
Memory Dependence

Sarrayidx7 = getelementptrinbounds 132,132 %a, 164 %indvarsiv S%tmp2 = shl nuw nsw 164 %indvars.iv, |

for(int i=2; i<ARRAY_SIZE; i++) {
c[i] = a[i'Z] + 3;
al[i] = c[i*2-4];

Gearrayidx = getelementptrinbounds 132,132* %a, 164 %tmp Scxitcond = icmp eq 164 %indvars.iv.next, 100

Gearrayidx2 = getelementptrinbounds 132,132 %c

}

bril %

exitcond, label %for.cond.cleanup, label %for.body, llvm.loop !6

0l1. Do not process load (with
potential alias) until previous
store is finished

Garrayidx5 = getelementptrinboundsi32,132* %c, 164 %tmp3

. Loop-
02. Do not process load until

i . Loop- independent
revious store address is read 2 .
F(’do not wait until value) y carried (non-consistent)
dependence Dependence

c[i*2-4]

03. Speculatively process load
until even under the presence of
aliasing store

Language,
Compiler,
Runtime
Details

Decoupling Data Supply from Computation

e Access Slice
e Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
 Computes address for STORE and updates it with STORE_ADDR.

e Execute Slice
e Retrieves data sent from Access Slice with CONSUME instruction.
e Computes value for STORE and updates it with STORE_VAL.

* Performance: 8X better from memory boundedness. Further multiplicative
speedups with N DOALL pairings of Access and Execute.

Access Slice Execute Slice

for (i=0;i<N;i++) { for (i=0;i<N;i++) for (i=0;i<N;i++)
vl = LOAD(&a[i]); { {
v2 = LOAD(&b[i]); vl = LOAD(&a[i]); vl = CONSUME();
val = vl + v2*k; » PRODUCE(v1); v2 = CONSUME();
STORE(&c[i], val) v2 = LOAD(&b[i]); val = vl + v2 * k;
} PRODUCE(v2); STORE_VAL(val)
STORE_ADDR(&c[i]); |}
}

Original
Code

Decoupling
Data Supply
from
Computation

Origina
Code

for (i=0;i<N;i++) {
vl = LOAD(&a[i]);
v2 = LOAD(&b[i]);
val = vl + v2*k;
STORE(&c[i], val)
}

=)

DeSC Compiler slices a program into two parts: access slice and execute slice

for (i=0;i<N;i++)

{
vl = LOAD(&a[i]);
PRODUCE (v1);
v2 = LOAD(&b[i]);
PRODUCE (v2);
STORE_ADDR (&c[i]);

Access Slice Execute Slice

for (i=0;i<N;i++)
{
vl = CONSUME();
v2 = CONSUME();
val = vl + v2 * k;
STORE_VAL (val)

® Inspired by seminal work: James Smith, Decoupled Access/Execute Architecture (DAE), ISCA’82

Access Slice

® Performs LOAD and supplies data to Execute Slice with PRODUCE instruction.
®* Computes address for STORE and updates it with STORE_ADDR.

Execute Slice

® Retrieves data sent from Access Slice with CONSUME instruction.
®* Computes value for STORE and updates it with STORE_VAL.

Access Slice can run ahead of Execute Slice

I SA Ad d it i O n S fo r DECADES Compiler for Decoupled Architecture

..

. Access = Execute
| Slice ¢ y Slice
Memory Decoupling) ~
(Specialized Core) | (Local memory) Computation
‘1 Device
ST (e.g., Accelerators,
CPUs)
\- J

* PRODUCE * CONSUME
Inserts data to the Data Retrieves data from the Data
Buffer Buffer
» STORE_ADDR * STORE_VAL |
Updates Store Value in ST

Updates Store Address in ST

Buffer Buffer

Decoupled Execution: Key Ideas

.

Jusi Execute
Slice v A Slice
[Data Supplier | Data Buffer > \
Sseciellzee Core (Local memory) .
(Specializ T 1) Computation
) Device
ST Buffer |« (e.g., Accelerators,
i CPUs)

1. DECADES compiler automatically generates code for decoupled Data Supply
and thus does not require programmer input for communication

management

2. DECADES specializes general-purpose core for data supply task for higher
performance

3. DECADES Data Supplier hardware can be used to supply data for different
types of computation devices

Why Decoupled Optimizations?

* Use of conventional OoO core as a data supplier in DAE often fails to improve performance
* Performance is often worse than for a single core

* Significantly worse than perfect latency tolerance (single core w/ perfect L1 cache)

w

Il DeSC (Conventional 00O core + 00O Computation Device)
I Perfect L1 Cache (Conventional OoO core)

N
3
|

N
I

-

Speedup over Single Core

o

LAVAMD MRIQ TCP AVG SRAD CFD HOTSPOT LU EANS AVG
Compute-Boungijorhoads Moderately Compute-BDound Workl\c‘)ads

Speedup over Single Core

LBM N SGEMM VG PATH SPMV STENCIL N
Moderaté\iy Memory!\%ound \/Qorkloads Memory-BounWWoriloa s

ACKPROP AVG

0.5x Scaled axis for Mem-Bound

Why Decoupled Optimizations?

* What are main problems?
1. Inefficiency in 00O core: Later instructions cannot commit if long latency load is blocking the head of the ROB

2. Loss of Decoupling Events: Data Supplier depends on computation device and has to stall

w

Il DeSC (Conventional 00O core + 00O Computation Device)
I Perfect L1 Cache (Conventional OoO core)

N
3
|

N
I

-

Speedup over Single Core

o

LAVAMD MRIQ TCP AVG SRAD CFD HOTSPOT LU EANS AVG
Compute-Boungijorhoads Moderately Compute-BDound Workl\c‘)ads

Speedup over Single Core
0.5x Scaled axis for Mem-Bound

LBM N SGEMM VG PATH SPMV STENCIL N
Moderaté\iy Memory!\%ound \/Qorkloads Memory-BounWWoriloa s

ACKPROP AVG

Opportunities in Decoupled Access Slice

Non-decoupled Code

. .) [Load—Compute—Store]
Opportunity: Most of LOADs in a Decoupled Access Slice

have a single PRODUCE instruction as its only dependent /\

[Load - Produce H Consume—Compute—Store]
Conventional Architecture: Results of LOAD instructions Access slice Frecute Slce

are used for computation

Decoupled Architecture: Results of most LOAD instructions are only used in the
Execute Slice

* No other dependent except for the immediate PRODUCE
* Terminal Load: Loads whose fetched

value is only used for the following Example Example
Access Slice Access Slice
PRODUCE

. for (i=0;i<N;i++) for (i=0;i<N;i++)
o Compiler converts such loads to { » {
LOAD_PRODUCE which has no idx = LOAD(8a[i]); 1dx = LOAD(&al1]);
- tmp = LOAD(&b[idx]); (LoAD_PRODUCE (&b[1idx]) ;|
dependent [PRODUCE(tmp);] }
}

Code before marking

Code after marking
Terminal Loads

Terminal Loads

Prior Work:
ESP, Carloni

PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

* Flexible Tile-Based Architecture e SoC Design Productivity

* System-Level Design Methodology CSEE E6868 - Gradient - Pareto Curve - Dec 02 |, the span of 1 month:

21: student teams

Application Application | 661: improved
Specification Requirements designs
- 32:avg. number

1.00 —-oemeeeeeeeeens
Profiling & Kernel Identification -~ ofimproved designs per
,, team
e ... lb5avg.number
Speqflcatlon AcceIeratorIP > of new designs
Refinement Encapsulation B
@ - per team/day
‘ "' s ~99: Pareto curve changes

Design-Space Exploration w/ High-Level Synthesis I i 11: final number of
i o0 - ... Pareto-optimal

—— designs

Interconnect &

Tile Configuration
w/ ESP Services

Physical Accelerator IP Instancing e
Constraints w/ HW Sockets 0 2000 4000 6000 8000 10000
Area (equivalent LUTS)

[Carloni, DAC 2016]

Coherence Models for Loosely-Coupled Accelerators

* Most accelerators embrace the shared-memory paradigm...
e ...but implement different levels of cache coherence. We classified them as:
1. Non-Coherent DMA

e Data must be flushed to memory
» Large data sets are accessed faster and without polluting caches

2. Fully-Coherent Load/Store
* A private cache is required to handle coherence transparently
* Preferred for frequent interleaving of processor and accelerator execution

3. Last Level Cache (LLC)-Coherent DMA (new)

e Data are flushed to LLC, thus reducing accesses to external memory
 Medium-sized data sets are accessed faster

4. Coherent DMA (new on No()

e No flush required thanks to recalls handled by the LLC on an NoC, or snooping on a bus
* Almost as fast as LLC-coherent DMA

e Better than LLC-coherent DMA for frequent interleaving of processor and accelerator
execution

Reconfigurable Coherence for Accelerators in ESP

SoC
NoC routers DRAM * First NoC-based system enabling
| ew—— ’ the four models of coherence for
EDR) accelerators to coexist and operate
> L;c o - simultaneously through run-time
e directory =111 L selection in the same SoC
TS 3 4 5 6 1 * Design based on ESP Platform Services
A °ee 0| N oC | coherence DMA 1I0O/IRQ . .
, L planes - planes plane - * Extension of the MESI directory-
Coank [oot]||| |[REOCESSOX based protocol to integrate LLC-
accelerator PLM] 1 instr] L1 data] .
(bank) bank] 3 coherent accelerators into an SoC
o T DM:ngp? | | ST e T » The design leverages the tile-based
opt. priv. C .
cache 1 TLBH ctrl [reggs] [IRQ [L2 cache L—h architecture of ESP over a packet-
_J%%L%Lé %L% = . & | %L%%L%Lé%a switched NoC to guarantee scalability
coherence DMA IO/IRQ |NoC |coherence IO/IRQ and modula rity
L planes planes plane planes plane |

Heterogeneous Coherence Implementation

Accelerator

sort =

Accelerator

fftld «

Accelerator

fft2d =

Accelerator

spmv ¥

Cache

Cache

Cache

Cache

Check and Update SoC Configuration

Accelerator v

spmv ¥ Cache

Memory & Debug~

- Cache
Processor A

~ |« Cache
Accelerator v
sort - Cache

Accelerator A
fft2d = Cache
Processor A
~ « Cache
Memory v
~ Cache
Accelerator v

fftld v |+ Cache

Accelerator A

fftld = Cache

Accelerator -

sort =

Accelerator v

Accelerator A

fft2d = Cache

* The CAD Infrastructure of ESP:

e direct instantiation of
heterogeneous configurable
components from predesigned
libraries

e Fully automated flow from the GUI
to bitstream for FPGAs

e Support for atomic test-and-set
and compare-and-swap
operations over the NoC enable:

* multi-processor and multi-
accelerator applications on top of
Linux SMP

Heterogeneous Coherence: Experimental Setup

CHARACTERIZATION OF THE TARGET ACCELERATORS. * FFT1D
Accelerat Memory PLM FPGA Resources — Streamlng memaory aCcess
ceeletator Footprint (kB) | LUT FF BRAM e Sort
FFT 1D 30KB - 256kB | 40 | 7537 4310 10
Sort 128kB - 4AMB | 24 | 36,868 31,300 6 — no temporal locality, but in-place
FFT 2D 256kB - 16MB | 128 | 3965 2,190 48 o _
SPMV 25kB - 10MB 12 | 8136 4476 24 (i.e. in the PLM) data processing
e FFT2D

“The ability to have perfectly
balanced accelerator stages is
highly dependent on the specific

— Streaming read accesses and
single-word write accesses.

memory access patterns, as well as * SPMV | |
on the system interconnect and the - fﬂsvmmetrlc data reuse with
memory hierarchy, including the irregular access pattern

selected cache-coherence model” — low compute-to-memory ratio

Non-Coherent vs. LLC-Coherent (single accelerator)

FFT-1D

n
o

-h
~
(&3]

-t
m

12.5

o
944K
2013K

Speedup (vs. Software)
~

o

N
n

o

Sort

P231K

7y S, 7, %,
%, %, g
4&4&0@

NC

135

10.5

FFT-2D

5490K

276 7K

.I 106K

| 48K

5849K

[1G488K

25
225
20
17.5

125

Sparse Matrix-Vector Mult.

Fom

195K

171K

 Compared to non-coherent accelerators, the relative speedup of LLC-
coherent accelerators ranges between 0.5x and 4x

* the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

* Confirmation of the benefits of runtime model selection based on footprint

Non-Coherent vs. LLC-Coherent (multiple
accelerators)

4 Accelerators

Speedup (vs. 1 accelerator)

1.5
1.375
1.25
1.125

1 |
0.875 |-
0.75 |-
0.625 -
0.5 -
0.375 |-
0.25 |-
0.125 |-

0

] 50K

1.5
1.375
1.25
1.125

0875 |- 8t-m-
0.75 |- I
0625 |- IO I
05 |08 LI O
0375 |- -8 OO O
0.25 |- 08180 O O O
0.125 |- 8 LI L A8 B

8 Accelerators

7 H76K

NC LLC

1.5
1.375
1.25
1.125

0.875 |--4t-mm- 1l
0.75 (-1t oo
0.625 |--45-15- |- (8-
0.5 (-1 -
0.375 (-4t
0.25 {5105 IS 18-
0.125 |-t 18- (-t

12 Accelerators

] 715K

The average performance degraded by up to 38% and 10% for LLC-coherent
and non-coherent accelerators, respectively

Confirmation that the choice of the cache-coherence model should be based
on the ratio between the size of the aggregate memory footprint of all running
accelerators and the capacity of the LLC

Cache-Coherence Models for Tiny Workloads

* The fully-coherent
FFT-1D Sparse Matrix-Vector Mult model can have similar
25 or better performance
el AT 2] models, but only for the

LI —

7 PRSOU——) S - * like the LLC-coherent
el model it also reduces or
removes memory

dCCESSES

 additionally, it does not
%, % require the flushing of
the processors’ caches,
which could disrupt the
work of other
components of the SOC

=
943K

G

0
102K

0.75 g

Speedup (vs. Software)

"""" 0.25

Fast-

Configurable

LUT-based
Tiles

DECADES Fast Reconfigurable LUT Tile

NOC
CPU LSU & Cache Router
Crossbar
m
/_\ N
I ™
N \
CLB
< -
'Q JI/—\
.§ CLB
o = — () —
n. T T Y T Y
CLBHDSP CLB];{DSP CLB
J A Jl\ J A Jl\ J A J
Inactive Contexts

* CPU

* Kernel scheduling

 Codes that can’t benefit from static
acceleration

* Memory
* Shared between CPU &
reconfigurable array (RA)
* Reconfigurable Array
* Partitionable

* Runtime-configurable multi-context
* BRAM & arithmetic block

60

Array of FR-LUT Tiles

' N
<
4 'd ¥ .
FARCA | FR-LUT
Tile Tile
<
4 e -)
FARCA | FR-LUT
Tile Tile
\ N4 J N,

FR-LUT
Tile

FR-LUT
Tile

* NOC

e Communication between tiles
(CPUs)

* Memory system messages
* Configurable memory system

* Integrates into DECADES tile
array

DECADES Chip Progress

* Begun legal enablement of silicon technology acquisition (MOSIS, GF,
Invecas)

* Brought Semiconductor Physical Design Kit (PDK) of Global Foundries GF
14LPP (14nm) in house at Princeton
* Currently setting up design kit

* Working to acquire Hardware IP primitives needed

 Very early development of chip tool flow

Timeline and
other issues...

Phase 1 Technical Milestones and Plans

7/18: Initial
DeSC
integration in
LLVM

8/18: Map
Matrix Multiply
&
Graphicionado

Architecture

Design

Simulation/
Emulation

9/18: High-level
sim operational

12/18: 1S Tile
test design

Chip Design

10/18: DeSC +
DOALL

12/18: in-
memory and
near-memory

compute

12/18: LLVM +
HLSim
integration.

2/19: CPU test
design

6/19: Mem
Granularity
Optimizations

3/19: IS Tile

Organization

3/19: QEMU

4/19: NoC test
design

6/19: Design
Parameter
Selections

6/19: FPGA
Emulation

6/19: Test Chip
design

Questions

* Demonstrate with DW (SPARC) core, but ideas apply to other ISA/Cores
too

e Use existing compute accelerator designhs wherever possible
* Eg Luca Carloni Columbia CS class

* Design or synthesize data supply accelerators, using either CPU or IS tile

* Considering use of GPU tiles for some apps

* Largely orthogonal to our primary ideas about custom data supply and
interconnect

* OP + Accels speak AXI + ethernet, UARTS, etc
e FPGA Hardware at Columbia vs. FPGA resources in cloud

Backup slides

Graphicionado

: Notify the vertex id of a completed update .
P1: Read P2 : Read P3: Read [Optional] P5: Process Pé6: Control P7: Read P9: Write
Processing Active Ed e.ID Table Edges for P4 : Read DST .Ed o Atomic Temp P8: Reduce Temp
Phase SRC Property 9 given SRC Property g Update DST Property DST Property
Hardware Sequential Edge ID Edge Read Random Custom Atomic Random Custom Random
Unit Vertex Read Read Vertex Read Computation Update Vertex Read Computation Vertex Write
If a vertex is updated ‘ \ Tem inati /
porary Destination
Aopl A1: Read A2: Read A4: Write A5: Write Vertex Property Update
pPply Vertex Temp Vertex A3: Apply Vertex Active Vertex I:l Sequential Memory Access - No Memory Access
Phase Property Property Property Property
| | Random Memory Access |:| Random/Sequential Memory Access
Hardeare Sequential Sequential Custom Sequential Sequentigl
Unlt Ver'teXRead VerteXRead CompUtation Vertexwrite Vertexwrlte (AR RN NERRRRENNRRERNRRERRNRRERRRENRNERERRERNNEERNREERRERRRERRRNERNNERNNNNNHN,]
. Notify the vertex id of a completed update
)] (P3: Read [Optional]) Pé6: Control P7: Read P9: Write
Processing SRI? I.)Readrt > Edges for P4 : Read DST PS'EzOZeSS Atomic Temp P8: Reduce Temp
Phase rope yJ l given SRC Property 9 Update DST Property DST Property
Hardware Sequential Edge Read Random -
Unit Vertex Read Vertex Read P5*: Process P6*: Control P7*: Read P9*: Write
iEd Atomic Temp P8*: Reduce Temp
ge Update SRC Property SRC Property
A1: Read A2: Read A4: Write N R R s R -/
Apply Vertex Temp Vertex Vertex Custom Atomic SPM Custom SPM
Phase Property Property Property Computation Update Vertex Read Computation Vertex Write
Hardware Sequential SPM Custom Sequential |:| Sequential Memory Access - No Memory Access - Scratchpad Memory Access
Unit

Vertex Read Vertex Read Computation Vertex Write |:| Random Memory Access |:| Random/Sequential Memory Access

Graphicionado

Source - Destination-
——— H - -
P1: Read P3: Read [Optional] P5: P P6: Control P7: Read P9: Write
Stream 1 e Edges for P4 : Read - TTocess Atomic Temp P8: Reduce Temp
SRC Propert Edge
perty given SRC DST Property 9 Update DST Property DST Property
—ee
P1: Read P3: Read [Optional] P5: P P6: Control P7: Read P9: Write
Stream 2 SRC }’r::erty Edges for P4 : Read .Edr;:ess Atomic Temp P8: Reduce Temp
iven SRC DST Propert Updat DST Propert DST Propert
given N x N operty pdate operty operty
Crossbar
. P3: Read Switch [Optional] . P6: Control P7: Read P9: Write
Stream 3 SRIEI .PReadrt Edges for P4 : Read PS.EI;rocess Atomic Temp P8: Reduce Temp
roperty given SRC DST Property ge Update DST Property DST Property
P1: Read P3: Read [Optional] P5: Process P6: Control P7: Read P9: Write
Stream 4 SRC-P ea t Edges for P4 : Read .Ed Atomic Temp P8: Reduce Temp
roperty given SRC DST Property ge Update DST Property DST Property
H
P2 : Read P3: Read [Optional] P6: Control P7: Read P9: Write
P1: Read . P5: Process .
SRC Property Edge ID Edges for P4 : Read Edge Atomic Temp P8: Reduce Temp
Table given SRC DST Property g Update DST Property DST Property

|:| Sequential Memory Access - No Memory Access
|:| Random Memory Access |:| Random/Sequential Memory Access

Graphicionado

Main Memory |:| Main Memory Access - No Memory Access
(SRC Property, DST Property, Edges) - Scratchpad Memory Access

3 a2

Notify the vertex id of a completed update

A \ 4

P9: rite

Processing Optiona _
P1: Read P2 : Read P3: Read . ' P6: Control
P:ase SRC Edge ID Edges for P4b§$ad P5.EPdrg(€:}ess Atomic P8: Reduce TS?Tp
Hardware ;
e Property Table given SRC Pronerty Update Probert

Scratchpad
(Temp DST Property)

Scratchpad
(EdgelDTable)

PRIOR WORK: Coherence Domain Restriction Flexible Memory

* Flexible memory system on top of cache cohere
 Enables the exact minimal communication neede
e Build incoherent coherent domains

e Restriction on application- or page-level

* Improves performance

* Shorter network on-chip distances
e Less interfering memory coherence traffic

* Reduces energy

* Fewer on-chip network links need to be transited
* Less area dedicated to tracking cache line sharers

* Reduces area
* Track fewer sharers on large configurations

8 ‘+. ﬂ ,”'*"' Y

-G £ 8
’!'ngu +m*m*m*mr‘ Domain 2

o ‘ﬁn*m*n.ﬁ‘. 28 '|
. 16 ||+||+|+|+||*|+|||+||

[28] {30}

"'I"I' AL

[Fu et al, MICRO 2015]

PRIOR WORK: EMBEDDED SCALABLE PLATFORMS

* Flexible Tile-Based Architecture e SoC Design Productivity

e System-Level Design Methodology CSEE EG868 - Gradient - Pareto Curve - Dec 02 |y the span of 1 month:

""

21: student teams

Application Application | 661: improved
Specification Requirements designs
i 32: avg. number

Profiling & Kernel Identification R e of ImpI‘OVEd deSIgns per
——— team

e ... Llsravg.number
Speqflcatlon AcceIeratorIP > of new designs
Refinement Encapsulation B
s - per team/day
‘ v‘v g ~99: Pareto curve changes

Design-Space Exploration w/ High-Level Synthesis I i 11: final number of
i 00 - Pareto-optimal

—— designs

""""""""""""""""""""""""""""""""""""" 26x: Performance range
AA 10x. Area range

Interconnect &
Tile Configuration
w/ ESP Services

Physical AcceleratorIPInstancing N . &2 00 @
Constraints w/ HW Sockets 0 2000 4000 6000 8000 10000
Area (equivalent LUTS)

[Carloni, DAC 2016]

TOWARDS A COMPUTER Design Renaissance

* The end of silicon dimensional scaling and
the rise of heterogeneous reconfigurable computing bring
an opportunity for a Computer Design Renaissance

* ...through richly
reconfigurable substrates
and intelligent
compilation and mapping

* ..by supporting the
creativity of
application developers to
realize innovative
architectures,
chips,
systems
and products

