
1

Efficient Data Supply for Parallel Heterogeneous
Architectures

TAE JUN HAM, Seoul National University
JUAN L. ARAGÓN, University of Murcia
MARGARET MARTONOSI, Princeton University

Decoupling techniques have been proposed to reduce the amount of memory latency exposed to high-
performance accelerators as they fetch data. Although decoupled access-execute (DAE) and more recent
decoupled data supply approaches offer promising single-threaded performance improvements, little work has
considered how to extend them into parallel scenarios. This paper explores the opportunities and challenges of
designing parallel, high-performance, resource-efficient decoupled data supply systems. We propose Mercury,
a parallel decoupled data supply system that utilizes thread-level parallelism for high-throughput data supply
with good portability attributes. Additionally, we introduce some micro-architectural improvements for data
supply units to efficiently handle long-latency indirect loads.

CCS Concepts: • Computer systems organization → Heterogeneous (hybrid) systems; Parallel archi-
tectures.

Additional Key Words and Phrases: Heterogeneous Architecture, Decoupled Architecture, Data Access Opti-
mization

ACM Reference Format:

Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2019. Efficient Data Supply for Parallel Heterogeneous
Architectures. ACM Trans. Arch. Code Optim. 1, 1, Article 1 (January 2019), 23 pages. https://doi.org/10.1145/
3310332

1 INTRODUCTION
In response to both application trends fueling increasing compute capability demands and the
end of Moore/Dennard technology scaling, specialized accelerators have emerged as an important
alternative to conventional cores. Although specialized accelerators show great potential in im-
proving compute performance and performance-per-watt, reaching their full potential still requires
overcoming the challenge of keeping them supplied with data.

Challenges in supplying data from memory to compute elements have been present and growing
for over three decades now—the so-called “memory latency wall” [53]. These become even more
difficult in the era of specialized accelerators. The success of specialized accelerators at speeding
up particular problems (e.g., encryption, graph analytics, image analysis) in turn makes memory
latency look—from a relative perspective—even larger. Accelerators widen the gap between the
computation capability and data accesses making thememory wall more severe. Without successful
solutions to this data supply problem, accelerators will not reach their performance potential.

New Paper, Not an Extension of a Conference Paper.
Authors’ addresses: Tae Jun Ham, Seoul National University, taejunham@snu.ac.kr; Juan L. Aragón, University of Murcia,
jlaragon@um.es; Margaret Martonosi, Princeton University, mrm@princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/1-ART1
https://doi.org/10.1145/3310332

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3310332
https://doi.org/10.1145/3310332
https://doi.org/10.1145/3310332

1:2 Ham, et al.

To achieve the goal of minimizing and tolerating memory latency, current specialized accelerator
designs usually place an additional burden on programmers. For example, programmers are asked to
manually partition data to a size that fits in a particular scratchpad memory, while scheduling data
transfer in a way that minimizes the exposed memory latency. Moreover, such optimization is often
tied to a specific configuration (e.g., scratchpad memory size, port count), so each configuration
change from one implementation to another requires rewriting the optimized communication code.
Thus, the question of how to efficiently feed the increasing number of fine-grained accelerators
without burdening programmers is a major problem that remains unsolved.

In part to address memory latency concerns, the emergence of specialized hardware accelerators
has led to a resurgence of interest in decoupled approaches. Drawing from the early Decoupled
Access Execute (DAE) approach [44, 45], recent works evolve and adapt such ideas for modern
processors [8, 15, 16, 22, 25, 37]. Both the original DAE proposal and more recent decoupling
approaches seek to mitigate the performance impact of memory latency by decoupling the memory
access operations from the compute operations that subsequently operate on those values. Instead of
relying on manual programmer effort, these approaches can use compiler support to automatically
generate separate code slices for the access portion (i.e., data supply) of the application and for
the execute portion (i.e., compute). Compared to the generic CPU used for access in the original
DAE, recent decoupled approaches specialize and optimize the Decoupled Data Supplier (DDS) Unit
specifically to minimize the memory latency exposed to the Compute Unit (CU).
Until now, most works on decoupled data supply systems have primarily focused on them in

single-threaded contexts: a single DDS unit and a single compute unit operating as a pair. This
one-to-one pairing offers single-threaded speedup, but with today’s workloads, we seek to support
larger amounts of on-chip parallelism. This paper explores the opportunities and challenges of
designing an efficient, high-performance decoupled data supply system for parallel configurations
where one or more DDS units supply in parallel to multiple compute units. Such approaches allow
decoupled data supply paradigms to leverage larger amounts of on-chip parallelism, to offer greater
speedups. In the process, we also show that they allow for better resource sharing that can reduce
hardware overheads while maintaining speedup.

The key contributions of this paper are:

• WeproposeMercury, a parallel, decoupled data supply systemwhich extends high-throughput
decoupled data supply techniques to parallel environments where thread-level parallelism of-
fers high-performance and efficient use of resources. In many cases, this allows DDS speedups
to be multiplicative on top of conventional parallel speedups. We show that the best parallel
DDS designs are often not simple replications of individual DDS approaches.

• TheMercury-N approach operates as a set of N individual DDS units paired with N individual
compute units. This scalable design offers an average 3.7x speedup for the evaluatedworkloads
over a conventional CMP.

• The Mercury-Shared approach utilizes a shared DDS unit leveraging simultaneous multi-
threading (SMT) techniques to drive multiple compute units. This approach has significant
advantages in terms of resource sharing. Mercury-Shared offers a comparable average
speedup (3.5x on multi-threaded workloads and 2.9x for multi-programmed ones) over a
CMP, yet using 2.5x less area than Mercury-N.

• In addition to gains through parallelism, we further extend the DDS microarchitecture by
presenting an optimization which enables the DDS to tolerate the effect of indirect loads.
Such loads have a high potential to limit the system performance and are very common on
applications processing graphs or sparse matrices. For workloads with heavy use of indirect
loads Mercury achieves 61-83% additional speedup.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:3

2 BACKGROUND
Decoupled Access Execute (DAE). The Decoupled Access-Execute (DAE) architecture was orig-
inally envisioned as a lower-complexity alternative to out-of-order processors with the goal of
reducing or better tolerating memory latency [44, 45]. In DAE approaches, a program code is
sliced into an access instruction stream and an execute instruction stream in order to improve
memory latency tolerance by more efficiently overlapping data accesses with computation. DAE
speedups hinge on ensuring that the access slice can run sufficiently ahead of the execute slice.
DAE approaches have high potential to outperform other data prefetching approaches, particularly
due to the effectiveness of their lookahead approach for hard-to-predict access patterns. Early
DAE approaches, however, fell short of their full performance potential in the case of both: a) loss
of decoupling events (LoD as termed in [2, 11, 49]), basically due to dependencies, that limit the
runahead distance between the access and execute threads; and b) lack of ROB space resulting in
limited ILP opportunities whenever a long-latency load was blocking the head of the ROB (in a
similar way as for conventional OoO cores).

Compute
Unit

Decoupled
Data Supplier

Data for
computation

Value to
Store

LD ST

[Optional] Compiler for decoupled architecture

Execute
Slice

Access
Slice

Memory Hierarchy

Data Buffer

Fig. 1. Generic decoupled data supply and compute system. Details vary across implementations [8, 15, 22, 37].

Decoupled Data Supply. One key aspect which differentiates DAE from many other prefetch
techniques is that DAE is not speculative. In other words, its access unit (data supplier) supplies all
data its execution unit (compute unit) needs. Based on this advantage, more recent work—expanding
on the key intuitions of DAE—has proposed decoupled data supply system designs feeding a diverse
set of compute units including accelerators [8, 15, 22, 37]. Fig. 1 shows a general decoupled data
supply and compute system, though different proposals vary in their specific hardware and compiler
support. In these works, a DDS unit is utilized to supply data for a compute unit with limited
latency tolerance such as an application-specific accelerator, a programmable accelerator, or a
conventional out-of-order core. A DDS supplies data to a designated storage near the compute
unit (e.g., scratchpad memory, hardware queue, CAM) ahead-of-time which allows the compute
unit to retrieve data with a very low access latency. There are several different design philosophies
embodied in different DDS proposals. For example, [22] utilizes a custom ISA and programming
model to design a programmable DDS unit that performs as well as an out-of-order core data
supplier for better energy efficiency. Another approach taken in [8] is to design a custom DDS unit
for each compute accelerator, which also results in an energy-efficient design. DeSC [15] takes a
third approach, as explained next.
DeSC System. DeSC [15] utilizes a specialized out-of-order core as a DDS unit. Starting from a
conventional out-of-order core, DeSC removes unneeded functionality, and then specializes the
core so that it can work as a very effective data supplier unit achieving much higher MLP/ILP. In

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Ham, et al.

particular, DeSC utilizes special instructions such as PRODUCE for its supplier to fill a data buffer
where the compute unit will later retrieve data from. DeSC’s supply side can work with minimal
modification with various types of compute sides (e.g., CPUs, Accelerators). For example, if the
compute side is a CPU, the conventional memory instructions (i.e., LOAD, STORE) are replaced with
instructions that in turn access the DeSC data buffer (i.e., CONSUME, STORE_VAL). On the other
hand, if the compute unit is a custom accelerator, their memory access units should be modified
to access the DeSC data buffer instead of main memory or scratchpad memory. DeSC facilitates
this process with a LLVM-based compiler that utilizes program slicing (specifically, backward
slicing) [52] and other techniques to split the original code into the access (supply) and execute
(compute) streams. With this compiler, the software for both the supplier and the compute sides
can be automatically generated without programmer intervention. If the compute unit being fed
is intended to be a custom accelerator, the compiler’s auto-generated execute slice can help to
automate (with high-level synthesis tools) or ease the custom design process of the accelerator
hardware that serves as a DeSC-compatible compute unit.

3 A PARALLEL DECOUPLED DATA SUPPLY SYSTEM

3.1 Challenge in Balancing the DDS and the CU
One of the key factors for a decoupled architecture to perform efficiently is to properly balance
the data supply rate with the data consumption rate. Otherwise, one part of the system will end up
waiting for the other to supply/consume data items. The data supply rate is defined as the number
of data items a DDS can supply to the data buffer per unit time, which mainly depends on both the
effectiveness of the DDS hardware and the application characteristics. For example, a powerful
data supplier (e.g., implementing effective structures to exploit more ILP, higher frequency, larger
L1 cache) can achieve a higher data supply rate than a weaker DDS without such advantages.
Also, application characteristics such as an easy-to-utilize ILP/MLP, high data locality, or simple
(direct) address calculations let the DDS achieve a higher data supply rate. Similarly, the data
consumption rate — defined as the number of data items consumed from the data buffer per unit
time — is determined by the effectiveness of the compute unit hardware as well as the application
characteristics. Having a more effective hardware (e.g., ability to exploit ILP, a large number
of ALUs, specialized functional units) and running applications with certain characteristics (i.e.,
easy-to-utilize ILP, low computation-to-data-access ratio) results in a higher data consumption
rate.

Summarizing, a decoupled architecture is a classical producer-consumer design. When a powerful
compute unit (i.e., the consumer) is paired with a weak DDS unit (i.e., the producer), the former
frequently stalls waiting for data to be supplied by the DDS, killing any potential benefit from
decoupling (as shown in Fig. 2a). The straightforward solution is to over-provision the DDS side to
increase its data supply capability to avoid it being the bottleneck of the system. However, when a
powerful and large DDS unit is paired with a compute unit which does not consume data so often,
the DDS unit will stay idle most of the time waiting for the data buffer to have free space to supply
new data. This will lead to an under-utilization of the DDS supply capability (as illustrated in Fig.
2b).

A natural solution to avoid the capability under-utilization issue is to fragment the units following
a finer-grained approach. By using multiple (but smaller) DDS and compute units instead of single
ones with a larger amount of resources, it is possible to avoid the under-utilization of resources.
As shown in Fig. 2c and 2d, under-utilized original resources can now be used by other DDS or
compute units. Still, this finer-grained pairing has two main limitations. First, a single small DDS
and a small compute unit pair naturally achieves lower performance compared to the pairing of

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:5

Memory

Decoupled
Data

Supplier

Compute
Unit

Memory

(b) Large DDS - small CU pairing(a) Small DDS – large CU pairing

Memory

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Compute
Unit

Can be used with
other Compute Units

Memory

Decoupled
Data

Supplier

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

Can be used with
other Data Suppliers

Underutilized Capability

Underutilized Capability

(d) Set of smaller DDSs to avoid supplying
capability underutilization

(c) Set of smaller CUs to avoid computing
capability underutilization

Compute
Unit

Compute
Unit

Decoupled
Data

Supplier

Fig. 2. How the use of multiple, finer-grained DDS and compute units avoids the capability under-utilization

issue.

Single Program Multiple Data

Memory

Decoupled
Data

Supplier

(a) A large DDS - large compute unit pairing

Compute
Unit

Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

(b) Mercury-N: Multiple smaller DDSs and
multiple smaller compute units with parallelism

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

(a) Multiple pairs of DDS and compute units
where each pair runs different application.
Hatched area shows under-utilized capability.

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

App0 App1 App2 App3

Memory

Decoupled
Data

Supplier

Decouple
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

(b) Mercury-Shared: A single shared DDS
supplying data for compute units each
running a different application.

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

App0 App1 App2 App3

Memory

Shared Decoupled Data Supplier

App0 App1 App2 App3

Fig. 3. How TLP enables higher performance with multiple smaller DDS and compute units.

large DDS unit and large compute unit. Second, a finer-grained DDS and compute unit pairing still
can suffer from capability under-utilization at either side (albeit to a lesser degree when compared
to Fig. 2a and 2b). The proposed Mercury systems aim to address these limitations through the use
of thread-level parallelism (TLP). Next subsection introduces two different Mercury configurations.

3.2 Overview of Mercury Systems
Mercury-N: A replicated DDS approach using TLP for better performance. To address the
aforementioned limitations, this paper first proposes a parallel decoupled data supply system named
Mercury-N. Mercury-N employs N pairs of DDS units and compute units connected in a 1-to-1
fashion. Instead of utilizing a single large DDS unit paired with a single compute unit (as in Fig. 3a),
Mercury-N follows a fine-grained approach by using multiple but smaller DDS units and compute
units (as in Fig. 3b). While the mismatch between data supply rate and data consumption rate can
still happen in this configuration, its degree is naturally much more limited since both DDS units
and compute units are smaller compared to the case where a large, powerful DDS is paired with a
weak compute unit (or contrarily, a large compute unit is paired with a small DDS). When high

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Ham, et al.

performance is demanded for a parallel (multithreaded) application, Mercury-N utilizes multiple
pairs of DDS and compute units, each pair running a thread of the application. On the other hand,
when there are multiple programs to run (multiprogrammed workload), each pair of DDS and
compute unit can run a different one.
TLP exploitation is not straightforward in all DDS implementations. For example, in order for

a custom DDS unit design (e.g., those proposed in [8, 22, 37]) to fully support TLP, a substantial
extension is needed to their programming frameworks, compilers, and hardware. On the other hand,
designs like DeSC can naturally support TLP since they build on top of a conventional out-of-order
core with full support for TLP. A DeSC-based DDS unit can utilize both existing programming
frameworks (e.g., Pthreads, OpenMP, C++ Threads, etc.) and the existing hardware support for
synchronization required for TLP. For this reason, Mercury builds on top of a DeSC-based supply
unit to implement a parallel decoupled data supply system. Additionally, note that the compute
units in Mercury do not need any explicit support for parallelism either since all memory accesses
and synchronization happen only on the DDS side.
Mercury-Shared:A sharedDDS approach for better resource utilization.While theMercury-
N configuration is effective, it can still suffer from the capability under-utilization issue when there
is a mismatch between the data supply rate and the data consumption rate, as shown in Fig. 4a. In
this example, there are four different applications (App0 to App3) running on four compute units,
each having different data consumption rates, as illustrated by their different widths. Each compute
unit is paired with a different DDS, all designed to have the same data supply rate, as illustrated by
their equal width. In particular, for App1 and App3, the supply rate of their respective DDS units
exceeds the consumption rate of the respective compute units and thus both DDS units become
under-utilized. For App2, however, the compute unit’s consumption rate is higher than its peer
DDS supply rate and so the compute unit becomes under-utilized. Finally, for App0, the supply and
consumption rate match and thus there is no under-utilization.
Mercury-Shared is a system consisting of a single big DDS and multiple compute units (Fig.

4b). Unlike a single pair DeSC or a replicated Mercury-N configuration, Mercury-Shared breaks
the convention of the 1-to-1 pairing between a DDS unit and a compute unit. Instead, a single
Mercury-Shared DDS unit supplies data for multiple compute units by adopting a simultaneous
multi-threading (SMT) approach. With an SMT-based design, the Mercury-Shared DDS unit
runs multiple access threads simultaneously; while each of those threads interacts with a different
compute unit in the system. The threads running on the shared DDS can be part of a single
multi-threaded application or be individual applications.
The key benefit of a shared DDS design is that it allows for a more efficient use of resources,

particularly in the case where each thread has different supply/compute demand needs. For example,
a shared DDS unit design allows resources not utilized for supplying data to one application (e.g.,
App1, App3 in Fig. 4) to be dynamically used for supplying data to another application with higher
data supply demands (e.g., App2 in Fig. 4). There are two different ways to utilize Mercury-Shared
architecture. First, a shared DDS unit can be configured to have the same amount of resources as
multiple DDS units. In such a scenario, Mercury-Shared can achieve better overall throughput
compared to Mercury-N by letting a particular data supply thread (i.e., App2 in Fig. 4b) utilize
more resources within the DDS if the compute unit executing App2 has a higher data demand need.
Second, a shared DDS can be configured to have fewer resources compared to multiple DDS units.
In such a case, Mercury-Shared can improve or maintain the performance of Mercury-N while
using fewer resources. Overall, Mercury-Shared is capable of dynamically tailoring data supply
rates to the needs of multiple compute units. Section 3.3 further explains the Mercury-Shared
design.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:7

Single Program Multiple Data

Memory

Decoupled
Data

Supplier

(a) A large DDS - large compute unit pairing

Compute
Unit

Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

(b) Mercury-N: Multiple smaller DDSs and
multiple smaller compute units with parallelism

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

(a) Multiple pairs of DDS and compute units
where each pair runs different application.
Hatched area shows under-utilized capability.

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

App0 App1 App2 App3

Memory

Decoupled
Data

Supplier

Decouple
Data

Supplier

Decoupled
Data

Supplier

Decoupled
Data

Supplier

(b) Mercury-Shared: A single shared DDS
supplying data for compute units each
running a different application.

Compute
Unit

Compute
Unit

Compute
Unit

Compute
Unit

App0 App1 App2 App3

Memory

Shared Decoupled Data Supplier

App0 App1 App2 App3

Fig. 4. How a shared DDS further avoids capability under-utilization by sharing supplier capability.

3.3 Designing a Shared Decoupled Data Supplier
There are various possible shared DDS unit designs based on an SMT approach. Our work particu-
larly focuses on a shared DDS unit which shares two key resources in out-of-order cores, namely,
the instruction window (IW) and the instruction bandwidth (e.g., fetch/decode/issue BW). It is
important to note that in a traditional SMT design, the sharing of such resources might easily result
in resource contention leading to performance degradation. However, the situation is different on
a decoupled system. This subsection explains how the unique nature of the access threads that
run on the shared DDS allows the effective sharing of resources with substantially less contention
compared to the conventional (non-decoupled) SMT scenario. Additionally, it explains how sharing
memory system resources brings even further benefits.
Sharing the Instruction BW. In a non-decoupled SMT sharing the instruction BW (and ALUs) is
quite a common bottleneck. For example, if four threads are running on a 4-way SMT core which
can process up to 4 instructions per cycle, each thread, on average, can process a single instruction
per cycle. While there are communication-intensive workloads whose IPC does not exceed 1, many
compute-intensive workloads often reach a higher IPC when provided with enough resources. If
such workloads are run on this SMT core, the fetch/decode/issue BW will work as a bottleneck,
degrading overall performance.

However, the situation is different in a decoupled scenario. A shared DDS unit runs sliced access
(supply) threads which are in charge of calculating addresses, accessing data from/to the memory
and supplying the data to the data buffer. Naturally, due to its frequent data accesses, a decoupled
access thread often has lower IPC compared to a non-decoupled code or the execute (compute)
thread. Furthermore, note also that decoupling reduces the number of instructions to be executed
on the DDS (since computation instructions are offloaded to the compute unit) and thus a decoupled
access thread requires a lower IPC to achieve the same performance compared to the non-decoupled
(original) thread. Therefore, given that access threads’ IPC is relatively low, even though multiple
of such low-IPC threads share the instruction bandwidth, overall throughput degradation can be
minimal or even non-existent. Still, there are cases where sharing the instruction BW can work as
a bottleneck. To minimize the negative impact in such cases, we introduce a fetch prioritization
policy which further minimizes the negative impact of instruction bandwidth sharing.
Decoupling-Aware Fetch Policy. In SMT cores, the fetch policy dictates how resources are
allocated to different threads. If a fetch policy favors one thread, it will utilize the fetch bandwidth
for the cycle, leading to more IW usage for that thread. The most commonly used fetch policy is
ICOUNT [50] which favors threads with the least number of instructions in the decode, rename,
and instruction window. This policy is based on the intuition that providing more resources to

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Ham, et al.

under-utilized threads brings overall efficiency. However, this simple intuition does not always
hold true in DAE-based architectures where the system performance is not solely dictated by
the capability of the DDS unit. In fact, increasing the data supply rate further does not improve
performance once it reaches the paired compute unit’s consumption rate.

In a scenario where the data supply rate exceeds the data consumption rate, the access thread will
frequently stall because the corresponding data buffer is full. However, a conventional policy like
ICOUNT will identify this thread as an under-utilized thread (since it often has a very low number
of instructions in decode, rename, and IW due to the frequent stalls) and will prioritize it. We
propose a simple yet effective variation of the ICOUNT policy that takes the decoupling scenario
into account. Our decoupling-aware fetch policy simply inspects the current occupancy of the data
buffer to estimate the decoupling distance. If the current occupancy exceeds a certain threshold
(e.g., 75% of the queue size), it indicates that the data consumption rate is likely to be lower than the
data supply rate and, thus, we assign this thread a low priority. Otherwise, if the current occupancy
is below a certain threshold (e.g., 25% of the queue size), this thread will soon need more data and,
thus, we assign the thread a high priority. Otherwise, the thread is categorized as normal priority.
Then, for every cycle, the fetch thread selection logic selects the thread with the highest priority.
If the selected thread does not have any instruction to fetch, another thread is given the chance.
If there are multiple threads in the same priority class, the normal ICOUNT policy is used. This
approach preserves the benefits of ICOUNT while preventing it from prioritizing the wrong threads.
Sharing the InstructionWindow. The Instruction Window (IW) is one of the essential resources
in an OoO core with a large impact on performance. Thus, sharing it can result in significant
performance degradation. For example, when four threads share the same instruction window,
this decreases the effective instruction window size for each thread to one-fourth. Furthermore,
it is also possible for a single thread to clog the instruction window, leaving even less effective
instruction window size for other threads. Typically, the IW is clogged when a thread has a long
latency instruction with many dependents. Dependents of the long latency instruction (and their
respective dependents) will clog the IW space until the long latency instruction fully executes.
However, a Mercury’s DDS unit is relatively free from this issue. First, its dependency chains

are substantially shorter. A non-decoupled thread’s dependency chain commonly starts with a
load instruction, continues with a number of computing instructions, and eventually ends with
a store instruction. On the other hand, a decoupled access thread’s dependency chain starts with
a load instruction and ends with a PRODUCE instruction which supplies data to the compute unit.
Second, all of the instructions in an access thread are low-latency instructions except for loads.
Furthermore, most of those loads are terminal load instructions which do not have any dependents.
As a result, sharing the IW among access threads, that are naturally short-dependency chained
and less prone to dependency-related stalls, reduces or even eliminates the potential performance
loss from sharing the IW as it would have been the case for a traditional SMT processor executing
normal threads.
Sharing Memory System Resources. There are two types of memory system resources: those
shared across the chip (e.g., main memory, shared caches) and those private to a core (L1 cache,
MSHRs). A shared, SMT-based DDS unit has an advantage in that all threads running on the
core share the per-core memory system resources which can be easily aggregated. E.g., if the
baseline single DDS unit has a 16KB L1 cache, a four-way SMT DDS unit will have a 64KB L1
cache. In a scenario where access threads from different applications are supplying data to different
compute units, this sharing allows one thread to utilize memory resources which other threads
are not utilizing (if any). Also, a multithreaded application can benefit from inexpensive inter-
thread communication through a (larger) L1 cache instead of a shared LLC which incurs coherence
overheads.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:9

OoO Issue

Reorder
Buffer

Fetch &
Decode

Rename

Memory System
(incl. MSHR)

Store
Address
Buffer

Register
File

Functional
Units

Compute
Unit

Decoupled Data Supplier (DDS) Compute Unit (CU)

PRODUCE

STORE_ADDR

CONSUME

LOAD STORE

Supply
Queue
(FIFO

Queue)

Data
Buffer
(FIFO

Queue)

LOAD_PRODUCE

Store
Value
Buffer CONSUME

STORE_VALMiss Dependent
Instruction Buffer

(MDI-B)

IO Issue

Fig. 5. Improved microarchitecture for a DeSC-style DDS unit that builds on top of an OoO core. Darker

structures are the new additions for Mercury.

4 IMPROVING THE DDS MICROARCHITECTURE
In addition to the parallel DDS unit configurations we presented in the previous section, this
work identifies some limitations for the supplier unit of DeSC and presents two microarchitectural
techniques to overcome such limitations. In fact, these improvements can be applied to any DDS
unit including the conventional DeSC (1-to-1 configuration), Mercury-N, and Mercury-Shared.
Still, these improvements are more beneficial for parallel systems containing multiple DDS or a
shared DDS with a tighter resource (such as the IW).

Fig. 5 shows the microarchitecture of the DDS unit and the compute unit. The DDS uses PRODUCE
instructions to push data into the data buffer in the compute unit. For each produced data item
there is a corresponding CONSUME instruction (or its equivalent) executed on the compute unit to
retrieve it. Similarly, the DDS executes a STORE_ADDR instruction to update the Store Address Buffer
with a calculated address for every original store instruction whereas the compute unit executes
a STORE_VAL instruction to pass the value generated (on the compute unit) to the DDS unit. The
Store Value Buffer is a structure that allows the re-use of the computed data as determined by a
decoupled store-to-load forwarding technique described in [15]. The following subsections explain
the DDS microarchitecture in more detail and propose two improvements.

4.1 SupplyQueue for Terminal Loads
A DDS unit is latency-tolerant by nature which allows for a near-zero latency exposed to the
compute units. However, for memory intensive applications, or when high performance compute
units are used, the DDS cannot cope with the higher data consumption rate, resulting in a bottleneck
of the entire system. One key difference between a DDS unit and a conventional core is that their
workloads are different. While a conventional core runs general-purpose code, a DDS unit only
runs access threads which contain just simple address calculation and data access instructions.
Therefore, the only remaining long-latency instructions which can potentially hurt data supply
throughput is a load instruction itself. This section explores how a specialized DDS design can
ameliorate the effect of long latency loads on the data supply throughput.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Ham, et al.

Miss-Dependent
Instruction Buffer

Reorder
Buffer

Register Deallocate Queue

Reg # Seq#

Migrate if long-latency non-terminal load or its dependents reaches head of ROB.

Allocate if committed architectural register’s previously mapped physical register is poisoned.

1

2

3

1

2

3

Allocate if terminal load is ready to retire but there is nonzero unresolved STORE_ADDR in MDI-B.

Retirement Register
Alias Table

Log# RoB P# MDI-B P#

Speculative Terminal
Load Buffer

Addr Seq# Dest Ctr

Fig. 6. Hardware structures to support MDI-B.

In an access slice, there are two types of loads: loads whose results are only used in the execute
slice; and loads whose results are later used within the access slice. Specifically, the first type of
loads are called terminal loads [15]. DeSC identifies such terminal loads with its compiler framework
and marks them using a LOAD_PRODUCE instruction. DeSC presents an optimization for such loads
to prevent them from blocking the head of the ROB. The key intuition is that since terminal loads’
values will not be re-used within the DDS unit, they can be retired early from the ROB (out-of-order)
and be moved to a CAM-structured buffer (named Terminal Load Buffer) where they wait until their
values are returned from memory which are then communicated, out-of-order, to the compute unit.

While DeSC’s proposed solution does the job, it utilizes relatively expensive, not scalable CAM
structures on both the DDS and compute units. Furthermore, since DeSC’s out-of-order com-
munication may introduce a deadlock, it also requires a deadlock prevention mechanism whose
implementation can be expensive. This paper proposes a cost-effective mechanism to manage
terminal loads without using a CAM structure.

For every instruction that sends data to the compute unit (i.e., PRODUCE), an entry is allocated in
a RAM structure named Supply Queue (depicted in Fig. 5). Then, when a terminal load executes
and misses in the cache, an MSHR will be assigned for it. Unlike a conventional core, however, this
MSHR records this terminal load’s position in the Supply Queue (instead of a destination register or
a ROB-entry – positions in the queue are assigned in-order at decode time) to indicate where to
buffer the value once it is serviced by the memory. This mechanism allows a terminal load which
got its MSHR assigned and reaches the head of the ROB to safely commit, even if its data is not
ready, since the assigned MSHR will provide the data directly to the corresponding entry in the
Supply Queue. Data from the head of this Supply Queue is passed over to the Data Buffer on the
compute unit in-order. This in-order communication allows the Data Buffer to be implemented as a
RAM structure and so any CONSUME instruction in the compute unit can access its matching data
without an expensive associative search. Since our Supply Queue is much simpler than the Terminal
Load Buffer in [15], it is easier to enlarge to enhance performance.

4.2 Attacking Indirect Loads: The MDI-B
No decoupling approach will be broadly useful without addressing long-latency indirect loads (i.e.,
loads whose outcome is used to compute another load’s address). It is worth noting that indirect
loads have a high potential to limit the system performance for some classes of applications (e.g.,
graph analytics, sparse matrix computation) which include many of such loads. The MDI-B is our
novel micro-architectural approach to address this issue.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:11

i1: idx = LOAD(a[i])
i2: STORE_ADDR(b[idx])
i3: LOAD_PRODUCE(c[i])

Fig. 7. Indirect store address example.

Miss-Dependent Instruction Buffer (MDI-B). By attacking the long-latency indirect loads that
can appear in an access stream, the MDI-B eliminates the ultimate bottleneck on the DDS perfor-
mance. The result is similar to an access stream comprised only of short-latency instructions.

Themain intuition is simple: migrate any long-latency indirect load and its dependent instructions
to the MDI-B (a FIFO buffer) when they reach the head of the ROB. This allows other newer
instructions to reach the head of the normal ROB and commit earlier than expected, bypassing
these older miss-dependent streams. The miss-dependent instructions (migrated to the MDI-B) will
execute in-order and commit when they reach the head of the MDI-B. If a conventional core running
non-decoupled code implemented the MDI-B, it would be ineffective. In such case, load instructions
often have deep dependency chains which would cause many instructions to be migrated to the
MDI-B. However, we take advantage of the DDS running decoupled access code, which has very
short dependency chains. Unlike conventional threads, the only dependents of load instructions in
an access thread are address calculation instructions or instructions to compute branch conditions.
For this reason, a small FIFO-based MDI-B buffer (32 entries in our experiments) can effectively
house the dependents of indirect loads in a decoupled scenario.

TheMDI-B approach is similar to previous literature on latency-tolerant out-of-order core designs
[10, 21, 31, 46]. However, the MDI-B approach is considerably less complex and utilizes substantially
fewer resources compared to such schemes. This is because we exploit the characteristic of a
decoupled access thread and target a smaller problem—mitigating the impact of indirect loads in
decoupled access threads. Designers can choose to exclude this extension if a target application is
known not to be heavily reliant on indirect loads.
Migrating Instructions to the MDI-B. Fig. 6 shows the MDI-B structures. When an indirect load
reaches the head of the ROB, and misses in the LLC, it is moved to the MDI-B and its destination
register is marked as poisoned. Later, if any instruction reaches the head of the ROB whose input
register is poisoned, it is also moved to the MDI-B and its destination register is poisoned. This
poisoning mechanism moves miss-dependent instructions to the MDI-B.

Branches and other exception-prone instructions (e.g., system calls, OS-related or other privileged
instructions) are not migrated to the MDI-B to avoid a complicated recovery. Also, non-terminal
loads that depend on other non-terminal loads are neither migrated to prevent them from blocking
the in-order (FIFO) MDI-B structure. When such instructions reach the head of the ROB with a
poisoned input register, they simply wait until all other instructions in the MDI-B complete. Any
other instruction reaching the head of the ROB just commits from there when its execution finishes.
Early Retirement of Terminal Loads with MDI-B. With the MDI-B optimization, a terminal
load at the head of the ROB often cannot commit due to the presence of unknown STORE_ADDR

instruction migrated to the MDI-B. Fig. 7 shows a code example for such case, where i2 is a
STORE_ADDR instruction which depends on the load (i1) preceding it. If the MDI-B is enabled and
i1 misses in the LLC, i1 is migrated to the MDI-B. Since i2 depends on i1, it is migrated as well.
At that point, i3 is at the head of the ROB. However, since i2’s address is unknown, and it may
alias i3, it cannot retire. In this case, i3 should have to wait until i2 retires from the MDI-B, then
nullifying its potential benefit.

To attack this issue, our approach allows speculatively executed terminal loads to retire from the
ROB even when there are preceding unknown store address instructions. When a terminal load

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Ham, et al.

reaches the head of the ROB with a preceding unknown STORE_ADDR, it removes itself from the ROB
and retires to a CAM structure named the Speculative Terminal Load Buffer (STLB). As shown in Fig.
6, an STLB entry is a tuple of address, seq#, location in the Supply Queue, and a counter which
is initialized to the number of unresolved store addresses in the MDI-B. Also, for each new STLB
entry, the entry in the Supply Queue corresponding to the terminal load moved to the STLB entry
is marked as not ready. This prevents data from being sent to the CU while the terminal load is still
possibly dependent on a STORE_ADDR in the MDI-B. Every time a STORE_ADDR instruction executes
from the MDI-B, its address is checked against the loads in the STLB. In the case of a match, the
decoupled store-to-load forwarding mechanism proposed in [15] is triggered. Otherwise, every
younger (in terms of seq#) instruction’s counter field is decremented by one. Whenever an STLB
entry’s counter becomes zero, it is removed from the STLB and its matching Supply Queue entry is
marked as ready again. Our experiments show a tiny STLB (8-entries) is sufficient.

4.3 Potential Issues and Solutions for the MDI-B
Since the MDI-B extension allows instructions to bypass earlier indirect load instructions and their
dependents, few aspects of the processor microarchitecture should be changed. Below, we discuss
such changes.
RegisterManagement. In a conventional unified register file architecture, when an entry from the
ROB retires, the physical register that corresponds to the previous mapping of the just committed
instruction’s destination architectural register is freed. However, in our proposed design, since
ROB entries can commit earlier than MDI-B entries, the physical register cannot be freed when the
target physical register is currently poisoned. In such a case, instead of freeing the physical register,
we allocate an entry in a RAM structure named the Register Deallocate Queue (RDQ) (see Fig. 6)
with the current instruction’s sequence number (seq#). Whenever an instruction in the MDI-B
commits, it compares its sequence number with that of the head of the RDQ. If the former is higher,
the corresponding register of the RDQ’s head entry can be freed.
Exception/Mis-speculation Recovery. Mercury uses a Retirement Register Alias Table (RRAT)
(see Fig. 6) to recover from an exception or a branch mis-speculation. For supporting the MDI-B
extension, the RRAT is extended with one extra column which represents the register state seen by
the MDI-B (in addition to keeping the register state seen by the ROB). Now, when an instruction
retires from the ROB (or it is migrated to the MDI-B), it updates the ROB column of the RRAT with
its physical register number. On the other hand, when an instruction retires from the MDI-B, it
updates the MDI-B column of the RRAT. In addition, when the MDI-B frees a register, it clears the
entry in the MDI-B’s column. Therefore, when a branch misprediction or an exception occurs on
instructions in the ROB, the core simply waits until i) all the MDI-B instructions commit, and ii)
all preceding instructions in the ROB commit; and then flushes the pipeline. By doing so, the core
rolls back to the register state in the ROB’s column of the RRAT. Analogously, when an exception
occurs on instructions in the MDI-B (the only possible exception is a page fault), the core waits
until the instruction reaches the head of the MDI-B and flushes the entire pipeline. Then, the core
rolls back to the register state in the MDI-B’s column (or the ROB’s column counterpart if the
MDI-B’s column for a particular row is empty). Note that branch instructions are not migrated to
the MDI-B, and thus, there is no branch misprediction happening in the MDI-B to recover from.
Synchronization Instructions. The Mercury DDS unit has a weak consistency model similar (or
little stronger) to that of ARMv7’s which requires programmers to use appropriate synchronization
instructions such as fences when communicating between threads. With the proposed MDI-B
extension, fences or any other synchronization instruction i) do not commit when there are
preceding terminal loads, or ii) the MDI-B is not empty. Instead, such instructions simply wait at
the head of the ROB until such conditions are cleared.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:13

6.18 8.24

Compute-Bound Moderately Compute-Bound Moderately Memory-Bound Memory-Bound
LAVAMD MRIQ KMEANS LUD SRAD HOTSPOT CFD LBM NN PATH SPMV STENCIL SGEMM NW BACKPROP

0

1

2

3

4

5

S
p
e
e
d
u
p

Baseline

Perfect L1 Cache

Fig. 8. Workload categorization.

Table 1. Evaluated multi-programmed mixes.

MP1 mri-q, kmeans, cfd, hotspot 2x Cat1, 2x Cat2
MP2 mri-q, kmeans, pathfinder, nn 2x Cat1, 2x Cat3
MP3 mri-q, kmeans, backprop, nw 2x Cat1, 2x Cat4
MP4 cfd, hotspot, pathfinde, nn 2x Cat2, 2x Cat3
MP5 cfd, hotspot, backprop, nw 2x Cat2, 2x Cat4
MP6 pathfinder, nn, backprop, nw 2x Cat3, 2x Cat4
MP7 mri-q, cfd, pathfinder, backprop Cat1, Cat2, Cat3, Cat4
MP8 kmeans, hotspot, nn, nw Cat1, Cat2, Cat3, Cat4

5 MERCURY EVALUATION
5.1 Methodology
We use a heavily modified version of the Sniper simulator [3] for the performance evaluation.
Specifically, we extend Sniper’s cycle-level out-of-order processor model [4] so that it can model
Mercury’s ISA and hardware components.
Workloads. Our workloads consists of 15 parallel kernels from the Parboil [47] and Rodinia [7]
suites (mostly OpenMP versions suited for a CPU execution). Note that benchmark suites include
more than 15 kernels, however, we excluded a few kernels for our experiments because they
are extremely communication-bound (e.g., bfs, b+tree, etc.). These kernels benefit little from an
accelerator-based implementation or a decoupled architecture and thus are not considered as our
targets. Similarly, few extremely compute-bound (e.g., cutcp) kernels are also excluded to avoid
redundancy while keeping some as representative cases. These extreme benchmarks can be easily
identified by compilers, and help one to employ a decoupled architecture only when it is expected to
be beneficial. We excluded three benchmarks because of our evaluation framework’s incompatibility.
Note also that some of these OpenMP kernels provided by the official benchmark suites are not
tightly optimized for CPU execution so its behavior may be different from that expected for highly
optimized kernels (e.g., BLAS for matrix multiplication).
To identify applications’ sensitivity to memory latency, we run the 15 benchmarks on four

baseline OoO cores and measure their speedup on a perfect L1 cache system. Based on this result
(Fig. 8), we classify our workloads into four categories: compute intensive (Category 1), moderately
compute intensive (Category 2), moderately memory intensive (Category 3), and memory intensive
(Category 4). Utilizing these four categories, we construct eight multi-programmed workloads with
varying memory intensity (Table 1). To evaluate their performance, we synchronize all applications
at their entrance point to the region of interest and run until one application finishes. For the
performance metric, we measure system throughput (STP) as suggested in [12].
Configurations. Table 2 summarizes the architectural parameters used to model the baseline
and evaluated Mercury systems. For the baseline case, four conventional OoO cores are utilized.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Ham, et al.

Table 2. Architectural simulation parameters.

Baseline

Cores

Mercury-N

DDS unit

Mercury-Shared

DDS unit

Core

4x OoO cores 4x OoO cores 4-way SMT core
64-entry ROB 64-entry ROB 4 x 64-entry ROB

32-entry IW / 2.0 GHz
Fetch/Decode 4-way 4-way 2x4-way
Issue Width 4-way 4-way 8-way

Mercury

Structures

4 x 256-entry Supply Queue/Data Buffer
N/A 4 x 128-entry Store Address/Value Buffer

4 x [32-entry MDI-B]
(with 32-entry RDQ, 8-entry STLB)

L1 Cache
32KB/core 32KB/core 128 KB

4 ways, 2ns latency, 64B cacheline
L2 Cache 1MB, 8 ways, 10ns latency, 64B cacheline

Main Memory

(Base)
16 MSHRs/core 16 MSHRs/core 64 MSHRs

51.2GB/s BW, 100ns base latency
Main Memory

(Aggressive)
N/A 64 MSHRs/core 256 MSHRs
N/A 204.8GB/s BW, 100ns base latency

We only report the baseline with the base memory system since it is not limited by memory BW
and it does not get any benefit from the more aggressive memory system. For Mercury systems,
simplified baseline cores (with no memory hierarchy nor LSQs) are utilized as the compute units
(CUs). For Mercury-N we evaluate a case with four DDS units and four CUs. For Mercury-Shared,
we evaluate a system consisting of a single, 4-way SMT DDS unit and the same four CUs. Note
that we evaluate the Mercury-Shared DDS unit with 2x larger fetch/decode/issue width than the
Mercury-N DDS to avoid Mercury-Shared performance severely limited by its peak instruction
BW.
Area. We use McPAT [32] and CACTI [33] with a 22nm technology node to compare the area and
static power consumption of both Mercury configurations. Experiments show that a 4-way SMT
DDS for Mercury-Shared consumes 2.50x less area and 3.09x less static energy compared to the
four DDS units used for Mercury-N. Note that the baseline Mercury-N system utilizes about
2x or slightly more than 2x area (and static power) compared to the baseline since it requires an
additional core (i.e., DDS) in addition to the CU. This implies that Mercury-Shared requires about
40% more area and 33.3% more static power compared to the baseline.

5.2 Overall Performance Evaluation
Fig. 9 and 10 show the effectiveness of Mercury at improving system performance. There are three
key sources of Mercury speedup: hiding long latency memory accesses (i.e., like a perfect cache),
improving the access time of on-chip storage, and parallelization of address computation and value
computation. First, Mercury avoids exposing the memory latency to the compute units since DDS
units access data ahead-of-time and supply data to them. Second, Mercury compute units retrieve
data from a smaller data buffer instead of accessing a larger L1 cache, and thus their data access
latency is smaller (1 cycle instead of 4 cycles). Finally, unlike in a conventional architecture, address
computations (in the DDS) and value computations (in the compute units) happen in a truly parallel
manner. The second and third benefits allow Mercury to outperform a perfect L1 cache case (i.e., a
baseline with an L1 cache that always hits) which only gets the first benefit.
Performance Results (multi-threaded case). Fig. 9 shows Mercury’s performance normalized
to the baseline CMP (4x OoO cores). For each workload, the first two bars represents Mercury
configurations and the next two bars represents the same configuration with the aggressive memory
system, which has higher BW limit and MSHR counts. Here, the first two bars are normalized
to the baseline system with a base memory system while the next two bars are normalized to

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:15

0

2

4

6

8

2
x
 S

c
a

le
d

 Y
-A

x
is

Compute-Bound Moderately Compute-Bound Moderately Memory-Bound Memory-Bound

11.73x

LAVAMD MRIQ KMEANS LUD SRAD HOTSPOT CFD LBM NN PATH SPMV STENCIL SGEMM NW BACKPROP
0

1

2

3

4

S
p
e
e
d
u
p
 o

v
e
r

B
a
s
e
lin

e

Mercury-N (Base Mem)

Mercury-Shared (Base Mem)

Mercury-N (Aggressive Mem)

Mercury-Shared (Aggressive Mem)

Perfect L1 cache

Fig. 9. Performance of Mercury running multi-threaded workloads. The four memory-bound workloads use

right-side 2x scaled y-axis. Mercury-N offers 3.7x speedup and Mercury-Shared offers 2.9x speedup over

a baseline 4-core CMP. With a more aggressive memory system, they often outperform the baseline CMP

with a perfect L1 cache (i.e., always hit). Note that Mercury-Shared takes only 40% of the area for the DDS

compared to Mercury-N.

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r

B
a
s
e
lin

e Mercury-N (Base Mem)

Mercury-Shared (Base Mem)

Mercury-N (Aggressive Mem)

Mercury-Shared (Aggressive Mem)

Perfect L1 Cache

Fig. 10. Performance of Mercury running multi-programmed workloads. Mercury achieves substantial

speedup (Mercury-N: 3.7x, Mercury-Shared: 3.5x) over the baseline CMP and often outperforms the perfect

L1 with the aggressive memory system.

the baseline system with the baseline system with an aggressive memory system. The rightmost
bar represents a baseline system with a perfect L1 cache which models an ideal latency-tolerant
OoO core or an ideal prefetcher (i.e., which loads all data ahead-of-time without being limited by
the cache size or the available bandwidth). As shown, Mercury with the base memory system
achieves significant speedup across all workloads except for compute-bound ones. There are many
workloads where Mercury equals or even outperforms the perfect L1 cache results. Furthermore,
the Mercury-Shared configuration often matches or even exceeds the performance of Mercury-N
which has 2x more instruction BW, and 4x larger instruction window, and uses 2.5x more area.
The Mercury-Shared configuration can achieve even higher performance than Mercury-N when
there is inter-thread data sharing (e.g., path, sgemm). In spmv and backprop, Mercury-N outperforms
Mercury-Shared by a substantial margin. This is because these two workloads contain indirect
memory access patterns which pressure Mercury-Shared’s smaller IW.

When Mercury operates on the more aggressive memory system, Mercury’s throughput is not
held back by the limited memory BW and it achieves substantial speedup, specially for memory-
bound workloads, with an average speedup of 3.7x on Mercury-N and 2.9x on Mercury-Shared.
In almost all workloads, Mercury systems achieve equivalent or even higher performance than
what an ideal latency-tolerant core (i.e., perfect L1) can achieve for the reasons outlined at the
beginning of this section. An impressive 7.8x-11x speedup in memory intensive workloads shows
that Mercury has the potential to deliver very high performance when given enough external
resources. Considering that recent emerging memory technologies such as HBM or HMC deliver
high bandwidth [20, 23], we argue that this is a practical scenario.
Performance Results (multi-programmed case). Fig. 10 shows Mercury’s performance with
multi-programmed workloads. As in the multi-threaded case, Mercury with the base memory

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 Ham, et al.

0

10

20

30

40

2
x
 S

c
a
le

d
 Y

-A
x
is

Compute-Bound Moderately Compute-Bound Moderately Memory-Bound Memory-Bound
LAVAMD MRIQ KMEANS LUD SRADHOTSPOT CFD LBM NN PATH SPMV STENCILSGEMM NW BACKPROP

0

5

10

15

20

S
p
e
e
d
u
p
 o

v
e
r

S
in

g
le

 C
o
re

Mercury-1 (DeSC-like single pairing)

Mercury-N

Mercury-Shared

Fig. 11. Performance of Mercury (with aggressive memory system) over a single core for multi-threaded

workloads. Mercury combines the benefits of parallelism and decoupling (average speedup of 3.73x) to

achieve multiplicative speedups (Mercury-N: 15.3x, Mercury-Shared: 12.3x).

Compute-Bound Moderately Compute-Bound Moderately Memory-Bound Memory-Bound

14.68x

LAVAMD MRIQ KMEANS LUD SRAD HOTSPOT CFD LBM NN PATH SPMV STENCIL SGEMM NW BACKPROP
0

2

4

6

8

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p Accelerators w/ Cache Hierarchy

Mercury-N (Accelerators w/ DDS)

Mercury-Shared (Accelerators w/ DDS)

Mercury-N (Accelerators w/ Aggressive DDS)

Mercury-Shared (Accelerators w/ Aggressive DDS)

Perfect L1 Cache

Fig. 12. Speedup of Mercury with accelerator CUs over a set of 4 accelerators with direct cache hierarchy

access. Both Mercury systems (with the aggressive DDS) significantly improve the performance of the

baseline 4-accelerator system (Mercury-N: 3.11x, Mercury-Shared: 2.61x) by providing memory latency

tolerance to their paired accelerator CUs.

system achieves notable speedup across all mixes. Note that overall speedup is larger in multi-
programmed workloads compared to multi-threaded ones because there is no synchronization point
(or barriers) across threads which makes Mercury temporarily lose the decoupled distance. Also,
multi-programmed workloads inherently exhibit imbalance across threads which Mercury-Shared
benefits from. For this reason, despite having more resources and larger area , Mercury-Shared
often outperforms the Mercury-N configuration (e.g., MP3, MP5, MP7, MP8).
When Mercury is operating on the more aggressive memory system, it achieves significant

speedup (i.e., average of 3.7x on Mercury-N and 3.5x on Mercury-Shared), which is even higher
than perfect L1 cache speedup in most workloads, as in multi-threaded workloads. However, unlike
in the base memory system setup, the Mercury-N configuration generally outperforms Mercury-
Shared. With its ability to tolerate a large memory latency, a Mercury-Shared DDS unit is now
limited by its smaller instruction BW and instruction window size when operating with the more
aggressive memory system.
Comparison with a Single Core. Finally, with the aim of showing the multiplicative effect of
decoupling and parallelism, Fig. 11 compares Mercury systems’ throughput over a single out-of-
order core on aggressive memory systems. In addition, we show the speedup of Mercury-1 to
demonstrate how parallelism brings additional benefit in addition to the benefits of decoupling. As
shown here, bothMercury-N andMercury-Shared can achieve over 25x throughput improvement
compared to a single, conventional core on memory bound workloads. In such case, around 4x
(or more when there is data sharing across threads on read-only data) of the speedup comes from
parallelization, and over 6x speedup comes from decoupling (i.e., memory latency hiding, and
improving access time for on-chip storage). This shows that Mercury effectively combines the
benefits of parallelism along with the use of a decoupled data supply system.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:17

Accelerator System Results. Fig. 12 explores the performance of Mercury configurations (on
aggressive memory systems) when the CUs are hardware accelerators. For this experiment, we
utilize the approximate model for accelerators proposed in [15], which models accelerators as
idealized OoO cores (e.g., large resources, perfect instruction cache and branch predictor) with
the ability to execute applications’ key loops in parallel. Now, the baseline configuration utilizes
four accelerator CUs paired with the cache hierarchy. Mercury configurations use four accelerator
CUs, but without direct access to memory, paired either with four DDSs (in Mercury-N) or with a
single, shared DDS (in Mercury-Shared). The figure also reports each Mercury configuration
with a more aggressive DDS design, in the sense that they have 2x larger design parameters (e.g.,
larger IW, larger ROB, larger fetch/decode/issue BW). Finally, the perfect L1 cache configuration is
shown, which represents the baseline system with four accelerator CUs operating with perfect L1
caches.

On average, Mercury-N improves the performance of accelerator compute units by 2.42x while
Mercury-Shared improves performance by 1.77x. Particularly, both Mercury configurations are
much more effective in memory-bound workloads when compared to stand-alone accelerators
directly paired with a cache hierarchy. However, in many workloads, speedup from the Mercury-
Shared configuration is limited since the shared DDS has limited data supply rate due to its limited
resources (i.e., fetch/issue BW, IW). One interesting exception is backprop. This workload has
frequent accesses to shared data across threads and Mercury-Shared benefits from its shared L1
cache and achieves better performance than Mercury-N. With the more aggressive DDS designs,
the overall speedup of Mercury configurations improves greatly. On average, the Mercury-N
configuration achieves 3.11x speedup and the Mercury-Shared configuration achieves 2.62x
speedup over accelerators directly paired with the cache hierarchy. Particularly, utilizing the
aggressive DDS design improves the performance of Mercury-Shared since it was bottlenecked
by the limited data supply throughput of the shared DDS. In most applications, both Mercury-N
and Mercury-Shared achieve the performance comparable to accelerators with the perfect L1
cache. Still, in some applications (i.e., hotspot, path), accelerators with a perfect L1 cache perform
better than Mercury configurations since such applications include a substantial amount of address
computation which is better handled in accelerators than in DDSs.

5.3 Comparing Mercury-N and Mercury-Shared
Overall, the previous results show that Mercury-N and Mercury-Shared can both work as a
building block for larger parallel systems. Such systems can contain multiple instances of Mercury-
N and Mercury-Shared together to achieve even larger heterogeneous parallelism. Rather than
relying on one particular design, it is important to judiciously utilize both configurations depending
on the target since both Mercury-N and Mercury-Shared have advantages and disadvantages as
we discuss next.

Mercury-N’s main advantage is that it provides a simpler, modular design that can deal with a
variety of scenarios. Its intuitive nature allows for easy deployment and it scales relatively well as
long as an application has enough TLP. Still, this approach can result in capability-under-utilization
when there is a mismatch between a DDS unit’s data supply rate and its paired compute unit’s
data consumption rate. As a result, it utilizes more resources compared to Mercury-Shared while
achieving similar performance in many workloads or circumstances, such as when it is limited
by system memory bandwidth (e.g., Mercury performance with the base memory system in Fig.
9 and Fig. 10). Also, this approach is not well-suited for the case when compute units cannot be
designed at a finer granularity.
On the other hand, Mercury-Shared avoids the drawbacks of Mercury-N by utilizing an

SMT-based shared DDS unit. In many cases, particularly in scenarios where each access thread

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Ham, et al.

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
0.8

0.9

1

1.1

1.2

S
p
e
e
d
u
p
 o

v
e
r

B
a
s
e
lin

e
 C

a
s
e

ICOUNT

RoundRobin

Decoupling-Aware

Fig. 13. Effect of fetch policies for Mercury-Shared. The proposed fetch policy provides moderate speedup

(e.g., 10%) on workloads with a mismatch between the data supply rate and the data consumption rate.

(a)
BACKPROP SPMV

0

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Mercury-N (w/o MDI-B)

Mercury-N (w/ MDI-B)

(b)
BACKPROP SPMV

0

0.5

1

1.5

2

Mercury-Shared (w/o MDI-B)

Mercury-Shared (w/ MDI-B)

(c)
MP3 MP5 MP6 MP7

0

1

2

3

4

5

6
Mercury-Shared (w/o MDI-B)

Mercury-Shared (w/ MDI-B)

Fig. 14. Effect of the MDI-B on parallel workloads with indirect loads: (a) Mercury-N, (b) Mercury-Shared,

(c) Mercury-Shared (multi-programmed). The MDI-B provides additional 61-83% speedup to Mercury-N

systems.

is running different applications with varying data consumption rates, Mercury-Shared can
perform equal to or better than Mercury-N (see Fig. 10 with the base memory system). Of course,
Mercury-Shared can perform worse in certain situations (i.e., no data supply/consumption rate
mismatch, few DDS stalls, or aggressive memory systems) where its shared instruction BW or
IW can work as bottlenecks (e.g., the Mercury-Shared results with the more aggressive memory
system in Fig. 9).

5.4 Effects of Optimizations
Fetch Policy Effectiveness. Fig. 13 highlights how Mercury-Shared performance changes with
varying fetch policies. Performance is normalized to the same system’s performance case with
the ICOUNT policy as the baseline. The decoupled data supply system performance is not only
dependent on the amount of resources a thread has but also depends on the data supply rate and
the data consumption rate. When the compute unit’s data consumption rate is low and thus the
data buffer is almost full, since access threads have already supplied many data, allocating more
resources to this access thread does not achieve any speedup. Our proposed decoupling-aware fetch
policy (Section 3.3) prioritizes those threads having low data buffer occupancy and de-prioritizes
threads having a high data buffer occupancy. The proposed decoupling-aware policy works better
than the base ICOUNT when the workload has applications whose data buffer occupancy goes above
or below those thresholds during the execution. Overall, it achieves over 10% speedup in MP1 and
MP7. The policy almost always performs better than ICOUNT since it conservatively falls back to
the ICOUNT policy when there is no thread having high or low data buffer occupancy.
MDI-BEffectiveness. Fig. 14 shows how the use of theMDI-B improves performance onworkloads
that suffer from indirect memory accesses. In our evaluated workloads, there are two that exhibit
frequent indirect accesses: backprop and spmv. However, the fact that we only have two workloads
which shows an indirect access pattern does not mean that indirect load patterns are not popular

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Efficient Data Supply for Heterogeneous Architectures 1:19

in the real world. In fact, they are one of the key access patterns in important application domains
which include data mining, machine learning, graph analytic, etc. As shown in Fig. 14a, the use of
the MDI-B improves backprop’s performance by around 83% and spmv’s performance by 61% for the
Mercury-N configuration, when compared with Mercury-N without the MDI-B extension (but
with all other optimizations). On the other hand, for Mercury-Shared (Fig. 14b), the improvement
is less. This is because Mercury-Shared has a natural ability to still run other threads while one is
suffering from indirect load access latency. Fig. 14c supports this by showing that multi-programmed
workloads, including backprop, do not suffer a noticeable performance degradation without the
MDI-B approach.

6 RELATEDWORK
Latency-Tolerant Architectures. Kilo-Instruction Processor [10], Bolt [21], Waiting Instruction
Buffer [31], Continual flow pipeline [46], EMC [17], and several other previous works [1, 6, 40, 41]
explored the potential of migration or early retirement of long latency loads and their dependents
from the ROB or Issue Queue. While sharing the same motivation, our proposed MDI-B extension
exploits a unique opportunity presented in a decoupled access-execute architecture to achieve a
similar benefit at a much lower complexity.
Execution-based Prefetching Techniques. Execution-based prefetching techniques [5, 13, 18,
28, 30, 34, 35, 39, 42, 48, 54–56] are often related to decoupled execution. The common key idea
of such schemes is simple: construct a thread by hand, compiler, or hardware, and then let this
constructed thread run on a separate processor, core, or even on the same core to let this helper (or
pre-computation) thread fetch data into nearer storage (e.g., cache) ahead of compute time. While
the aforementioned prior work is effective for providing extra latency tolerance for conventional,
general purpose cores, such approaches are not suitable for accelerator-oriented heterogeneous
systems for a few reasons: i) some techniques only provide a subset of data that a loosely-connected
accelerator without direct access to main memory needs, ii) some approaches are speculative and
thus waste the limited on-chip storage by supplying excessive data which ends up not being used,
and iii) some of such proposals are designed for multicore systems where all cores have the same
capabilities (e.g., all of them with access to the memory system). Alternatively, Mercury envisions
efficient data supply for parallel, heterogeneous architectures where the compute units can be
accelerators without the ability to directly access the memory hierarchy.
Other PrefetchingTechniques. Stride-based prefetchers [14, 27, 38] and correlation-based prefetch-
ers [19, 24, 26, 36] are widely used to predict and prefetch the next data to be accessed with a
minimal amount of computation. Such approaches often perform the less amount of computation
when compared to the execution-based prefetching techniques and thus their implementation tends
to be simpler; however, they tend to be much more speculative and less accurate. Also, they are not
suitable for accelerator-oriented heterogeneous systems because i) they only fetch a subset of the
necessary data and ii) likely to fetch unnecessary data and waste the limited on-chip storage as
well as off-chip bandwidth.
Hybrid Core Design. Some other recent works propose to utilize multiple different core microar-
chitectures for higher performance or energy efficiency. For example, MorphCore [29] can operate
as both an OoO core or a SMT core. Shelf [43] utilizes an in-order pipeline within an OoO core for
higher efficiency, whereas Outrider [9] utilizes a SMT core and decoupled execution to achieve
higher memory latency tolerance.
Parallel Configurable Heterogeneous Architectures. The Widget architecture [51] proposes
utilizing a sea of fine-grained resources (inst. engine) for power-proportional computing. The key
intuition is that allowing finer-grained hardware elements to work together to achieve higher

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Ham, et al.

performance allows for more efficient computing. Although at a different scale, Mercury shares
the same insight and advocates configurable parallelism.

7 CONCLUSIONS
To summarize, this work has taken promising decoupled data supply work from the single-threaded
1-to-1 pairing world into the parallel world. In doing so, it offers an opportunity for parallel
workloads to gain speedup from reducing or mitigating exposed memory latency in addition to
speedup from parallelism itself. Our approaches offer over 3.7x average speedup with Mercury-N
and 2.9x speedup with Mercury-Shared , but this effect is multiplied by other forms of parallelism
achieved. As a result, a Mercury-N or Mercury-Shared configuration, where four OoO cores
work as compute units, can accelerate memory-bound algorithms (i.e., stencil, sgemm, nw, backprop)
by over 25x compared to a single core. Mercury’s decoupled data supply offers the advantages of
high programmability, modular design, and good speedup potential for many accelerator-oriented
systems. Going forward, as heterogeneous approaches become even more common, decoupled data
supply approaches must play an important role in managing the challenges of effective data supply
to accelerators.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments and suggestions. This work was
supported in part by C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This work was supported in part by the NSF under
the grant SHF-1617732. This work was also supported in part by the Spanish MINECO under
grant TIN2015-66972-C5-3-R and the Spanish State Research Agency under grant TIN2016-75344-R
(FEDER funds, EU).

REFERENCES
[1] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. 2003. Checkpoint Processing and Recovery: Towards Scalable

Large Instruction Window Processors. In Proceedings of the 36th Annual International Symposium on Microarchitecture
(MICRO). http://dl.acm.org/citation.cfm?id=956417.956554

[2] Peter Bird, Alasdair Rawsthorne, and Nigel Topham. 1993. The Effectiveness of Decoupling. In Proceedings of the 7th
International Conference on Supercomputing (ICS). http://doi.acm.org/10.1145/165939.165952

[3] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the Level of Abstraction for Scalable
and Accurate Parallel Multi-core Simulation. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). http://doi.acm.org/10.1145/2063384.2063454

[4] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout. 2014. An Evaluation of High-Level
Mechanistic Core Models. ACM Transactions on Architecture and Code Optimization 11, 3 (2014), 23.

[5] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and Yale N. Patt. 1999. Simultaneous Subordinate
Microthreading (SSMT). In Proceedings of the 26th Annual International Symposium on Computer Architecture (ISCA).
10. https://doi.org/10.1145/300979.300995

[6] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sherman Yip, Håkan Zeffer,
and Marc Tremblay. 2009. Simultaneous Speculative Threading: A Novel Pipeline Architecture Implemented in
Sun’s Rock Processor. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA).
http://doi.acm.org/10.1145/1555754.1555814

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proceedings of the International Symposium on Workload
Characterization (IISWC). http://dx.doi.org/10.1109/IISWC.2009.5306797

[8] T. Chen and G. E. Suh. 2016. Efficient data supply for hardware accelerators with prefetching and access/execute
decoupling. In Proceedings of the 49th Annual International Symposium on Microarchitecture (MICRO).

[9] Neal Clayton Crago and Sanjay Jeram Patel. 2011. OUTRIDER: Efficient Memory Latency Tolerance with Decoupled
Strands. In Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA). http://doi.acm.
org/10.1145/2000064.2000079

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dl.acm.org/citation.cfm?id=956417.956554
http://doi.acm.org/10.1145/165939.165952
http://doi.acm.org/10.1145/2063384.2063454
https://doi.org/10.1145/300979.300995
http://doi.acm.org/10.1145/1555754.1555814
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://doi.acm.org/10.1145/2000064.2000079
http://doi.acm.org/10.1145/2000064.2000079

Efficient Data Supply for Heterogeneous Architectures 1:21

[10] Adrián Cristal, Oliverio J. Santana, Mateo Valero, and José F. Martínez. 2004. Toward Kilo-instruction Processors. ACM
Transactions on Architecture and Code Optimization 1, 4 (2004), 389–417. http://doi.acm.org/10.1145/1044823.1044825

[11] Assia Djabelkhir and Andre Seznec. 2003. Characterization of embedded applications for decoupled processor
architecture. In International Workshop on Workload Characterization (WWC).

[12] Stijn Eyerman and Lieven Eeckhout. 2014. Restating the Case for Weighted-IPC Metrics to Evaluate Multiprogram
Workload Performance. IEEE Computer Architecture Letters 13, 2 (July 2014), 93–96. https://doi.org/10.1109/L-CA.2013.9

[13] Alok Garg and Michael C. Huang. 2008. A Performance-correctness Explicitly-decoupled Architecture. In Proceedings
of 41st Annual International Symposium on Microarchitecture (MICRO). http://dx.doi.org/10.1109/MICRO.2008.4771800

[14] J. D. Gindele. 1977. Buffer block prefetching method.
[15] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled Supply-compute Communication

Management for Heterogeneous Architectures. In Proceedings of the 48th Annual International Symposium on Microar-
chitecture (MICRO). http://doi.acm.org/10.1145/2830772.2830800

[16] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2017. Decoupling Data Supply from Computation for Latency-
Tolerant Communication in Heterogeneous Architectures. ACM Transactions on Architecture and Code Optimization
14, 2, Article 16 (June 2017), 27 pages. https://doi.org/10.1145/3075620

[17] Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2016. Accelerating Dependent Cache Misses
with an Enhanced Memory Controller. In Proceedings of the 43rd International Symposium on Computer Architecture
(ISCA).

[18] Milad Hashemi, Onur Mutlu, and Yale N. Patt. 2016. Continuous Runahead: Transparent Hardware Acceleration for
Memory IntensiveWorkloads. In Proceedings of the 49th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO). 12. http://dl.acm.org/citation.cfm?id=3195638.3195712

[19] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, and
Parthasarathy Ranganathan. 2018. Learning Memory Access Patterns. In Proceedings of the 35th International Conference
on Machine Learning (ICML).

[20] High Bandwidth Memory (HBM) 2015. High-Bandwidth Memory (HBM). https://www.amd.com/Documents/
High-Bandwidth-Memory-HBM.pdf.

[21] A. Hilton and A. Roth. 2010. BOLT: Energy-efficient Out-of-Order Latency-Tolerant execution. In Proceedings of the
Sixteenth International Symposium on High-Performance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA.
2010.5416634

[22] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. 2015. Efficient Execution of Memory Access Phases
Using Dataflow Specialization. In Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA). 13. https://doi.org/10.1145/2749469.2750390

[23] Hybrid Memory Cube (HMC) Consortium 2018. Hybrid Memory Cube (HMC). http://www.hybridmemorycube.org.
[24] Akanksha Jain and Calvin Lin. 2013. Linearizing Irregular Memory Accesses for Improved Correlated Prefetching. In

Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[25] Alexandra Jimborean, Konstantinos Koukos, Vasileios Spiliopoulos, David Black-Schaffer, and Stefanos Kaxiras. 2014.

Fix the Code. Don’T Tweak the Hardware: A New Compiler Approach to Voltage-Frequency Scaling. In Proceedings of
Annual International Symposium on Code Generation and Optimization (CGO). Article 262, 11 pages. https://doi.org/10.
1145/2544137.2544161

[26] Doug Joseph and Dirk Grunwald. 1997. Prefetching Using Markov Predictors. In Proceedings of the 24th Annual
International Symposium on Computer Architecture (ISCA).

[27] N. P. Jouppi. 1990. Improvind direct-mapped cache performance by the addition of a small fully-associative cache and
prefetch buffers. In ISCA.

[28] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. 2011. Inter-core Prefetching for Multicore Processors Using
Migrating Helper Threads. In Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). https://doi.org/10.1145/1950365.1950411

[29] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N. Patt. 2012. MorphCore: An Energy-Efficient
Microarchitecture for High Performance ILP and High Throughput TLP. In Proceedings of the 45th Annual International
Symposium on Microarchitecture (MICRO). 12. https://doi.org/10.1109/MICRO.2012.36

[30] Dongkeun Kim and Donald Yeung. 2002. Design and Evaluation of Compiler Algorithms for Pre-execution. In
Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.1145/605397.605415

[31] Alvin R. Lebeck, Jinson Koppanalil, Tong Li, Jaidev Patwardhan, and Eric Rotenberg. 2002. A Large, Fast Instruc-
tion Window for Tolerating Cache Misses. In Proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA). 12. http://dl.acm.org/citation.cfm?id=545215.545223

[32] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT: An
Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures. In Proceedings of

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://doi.acm.org/10.1145/1044823.1044825
https://doi.org/10.1109/L-CA.2013.9
http://dx.doi.org/10.1109/MICRO.2008.4771800
http://doi.acm.org/10.1145/2830772.2830800
https://doi.org/10.1145/3075620
http://dl.acm.org/citation.cfm?id=3195638.3195712
https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf
https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf
https://doi.org/10.1109/HPCA.2010.5416634
https://doi.org/10.1109/HPCA.2010.5416634
https://doi.org/10.1145/2749469.2750390
http://www.hybridmemorycube.org
https://doi.org/10.1145/2544137.2544161
https://doi.org/10.1145/2544137.2544161
https://doi.org/10.1145/1950365.1950411
https://doi.org/10.1109/MICRO.2012.36
https://doi.org/10.1145/605397.605415
http://dl.acm.org/citation.cfm?id=545215.545223

1:22 Ham, et al.

the 42nd Annual International Symposium on Microarchitecture.
[33] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2011. CACTI-P: Architecture-level modeling

for SRAM-based structures with advanced leakage reduction techniques. In International Conference on Computer-Aided
Design (ICCAD).

[34] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Santosh G. Abraham. 2005. Dynamic Helper Threaded
Prefetching on the Sun UltraSPARC CMP Processor. In Proceedings of the 38th Annual International Symposium on
Microarchitecture (MICRO). http://dx.doi.org/10.1109/MICRO.2005.18

[35] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. 2003. Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-Order Processors. In Proceedings of the 9th Annual International Symposium on
High-Performance Computer Architecture (HPCA). http://dl.acm.org/citation.cfm?id=822080.822823

[36] Kyle J. Nesbit and James E. Smith. 2004. Data Cache Prefetching Using a Global History Buffer. In Proceedings of the
10th International Symposium on High Performance Computer Architecture (HPCA).

[37] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankaralingam. 2017. Stream-Dataflow Ac-
celeration. In Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA). https:
//doi.org/10.1145/3079856.3080255

[38] S. Palacharla and R. E. Kessler. 1994. Evaluating Stream Buffers As a Secondary Cache Replacement. In Proceedings of
the 21st Annual International Symposium on Computer Architecture (ISCA).

[39] R. Parihar and M. C. Huang. 2017. DRUT: An Efficient Turbo Boost Solution via Load Balancing in Decoupled
Look-Ahead Architecture. In Proceedings of the 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 91–104. https://doi.org/10.1109/PACT.2017.35

[40] Miquel Pericas, Adrian Cristal, Francisco J. Cazorla, Ruben Gonzalez, Daniel A. Jimenez, and Mateo Valero. 2007.
A Flexible Heterogeneous Multi-Core Architecture. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT).

[41] Miquel Pericas, Adrian Cristal, Ruben González, Daniel Jiménez, Mateo Valero, et al. 2006. A decoupled kilo-instruction
processor. In Proceedings of the 12th International Symposium on High Performance Computer Architecture (HPCA).

[42] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. 2004. Decoupled Software Pipelining with
the Synchronization Array. In Proceedings of 13th International Conference on Parallel Architectures and Compilation
Techniques (PACT). http://dx.doi.org/10.1109/PACT.2004.14

[43] Faissal M. Sleiman and Thomas F. Wenisch. 2016. Efficiently Scaling Out-of-order Cores for Simultaneous Multithread-
ing. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA). 13. https://doi.org/10.1109/
ISCA.2016.45

[44] James E. Smith. 1982. Decoupled Access/Execute Computer Architectures. In Proceedings of the 9th Annual Symposium
on Computer Architecture (ISCA). 8. http://dl.acm.org/citation.cfm?id=800048.801719

[45] James E. Smith. 1984. Decoupled Access/Execute Computer Architectures. ACM Transactions on Computer Systems 2, 4
(1984), 289–308. http://doi.acm.org/10.1145/357401.357403

[46] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and Mike Upton. 2004. Continual Flow Pipelines.
In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). http://doi.acm.org/10.1145/1024393.1024407

[47] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and
W-m Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput computing. Technical
Report IMPACT-12-01. University of Illinois at Urbana-Champaign.

[48] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. 2000. Slipstream Processors: Improving Both Performance
and Fault Tolerance. In Proceedings of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). http://doi.acm.org/10.1145/378993.379247

[49] Nigel Topham, Alasdair Rawsthorne, CallumMcLean,Muriel Mewissen, and Peter Bird. 1995. Compiling andOptimizing
for Decoupled Architectures. In Proceedings of the Conference on Supercomputing (SC). 40. http://doi.acm.org/10.1145/
224170.224301

[50] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L. Stamm. 1996. Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor. In Proceedings of the
23rd Annual International Symposium on Computer Architecture (ISCA). 12. https://doi.org/10.1145/232973.232993

[51] Yasuko Watanabe, John D. Davis, and David A. Wood. 2010. WiDGET: Wisconsin Decoupled Grid Execution Tiles. In
Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA). 12. https://doi.org/10.1145/
1815961.1815965

[52] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering (ICSE).
[53] William A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Computer

Architecture News 23, 1 (March 1995), 20–24.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dx.doi.org/10.1109/MICRO.2005.18
http://dl.acm.org/citation.cfm?id=822080.822823
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1109/PACT.2017.35
http://dx.doi.org/10.1109/PACT.2004.14
https://doi.org/10.1109/ISCA.2016.45
https://doi.org/10.1109/ISCA.2016.45
http://dl.acm.org/citation.cfm?id=800048.801719
http://doi.acm.org/10.1145/357401.357403
http://doi.acm.org/10.1145/1024393.1024407
http://doi.acm.org/10.1145/378993.379247
http://doi.acm.org/10.1145/224170.224301
http://doi.acm.org/10.1145/224170.224301
https://doi.org/10.1145/232973.232993
https://doi.org/10.1145/1815961.1815965
https://doi.org/10.1145/1815961.1815965

Efficient Data Supply for Heterogeneous Architectures 1:23

[54] Weifeng Zhang, Dean M. Tullsen, and Brad Calder. 2007. Accelerating and Adapting Precomputation Threads for
Effcient Prefetching. In Proceedings of the 13th International Symposium on High Performance Computer Architecture
(HPCA). http://dx.doi.org/10.1109/HPCA.2007.346187

[55] Huiyang Zhou. 2005. Dual-Core Execution: Building aHighly Scalable Single-Thread InstructionWindow. In Proceedings
of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT). http://dx.doi.org/10.
1109/PACT.2005.18

[56] Craig Zilles and Gurindar Sohi. 2001. Execution-based Prediction Using Speculative Slices. In Proceedings of the 28th
Annual International Symposium on Computer Architecture (ISCA). 12. https://doi.org/10.1145/379240.379246

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://dx.doi.org/10.1109/HPCA.2007.346187
http://dx.doi.org/10.1109/PACT.2005.18
http://dx.doi.org/10.1109/PACT.2005.18
https://doi.org/10.1145/379240.379246

	Abstract
	1 Introduction
	2 Background
	3 A Parallel Decoupled Data Supply System
	3.1 Challenge in Balancing the DDS and the CU
	3.2 Overview of Mercury Systems
	3.3 Designing a Shared Decoupled Data Supplier

	4 Improving the DDS Microarchitecture
	4.1 Supply Queue for Terminal Loads
	4.2 Attacking Indirect Loads: The MDI-B
	4.3 Potential Issues and Solutions for the MDI-B

	5 Mercury Evaluation
	5.1 Methodology
	5.2 Overall Performance Evaluation
	5.3 Comparing Mercury-N and Mercury-Shared
	5.4 Effects of Optimizations

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

